Uniform boundedness and convergence of global solutions to a strongly-coupled parabolic system with three competitive species

Yanhong Zhang
College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350108, PR China

ARTICLE INFO

Keywords:

Strongly-coupled
Uniform boundedness
Convergence
Global solutions

Abstract

Uniform boundedness and convergence of global solutions are proved for strongly-coupled parabolic systems with cross-diffusions dominated by self-diffusions in population dynamics, Gagliardo-Nirenberg inequalities are used in the estimates of solutions in order to establish W_{2}^{1}-bounds uniform in time.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and basic proposition

In an attempt to model spatial segregation phenomena between two competing species, Shigesada et al. [1] proposed the following quasilinear parabolic system $\left(P_{0}\right)$ in 1979:

$$
\begin{cases}u_{t}=\Delta\left[\left(d_{1}+\alpha_{11} u+\alpha_{12} v\right) u\right]+\left(a_{1}-b_{1} u-c_{1} v\right) u, & (x, t) \in \Omega \times(0, \infty) \tag{0}\\ v_{t}=\Delta\left[\left(d_{2}+\alpha_{12} u+\alpha_{22} v\right) v\right]+\left(a_{2}-b_{2} u-c_{2} v\right) v, & (x, t) \in \Omega \times(0, \infty) \\ \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 & (x, t) \in \partial \Omega \times(0, \infty) \\ u(x, 0)=u_{0}(x) \geqslant 0, v(x, 0)=v_{0}(x) \geqslant 0 & x \in \bar{\Omega}\end{cases}
$$

so far the existence of nonnegative global solutions for system $\left(P_{0}\right)$ has been proved extensively in one or two dimension [210]. Shim [9] established the global uniform boundedness and convergence for system (P_{0}) with $n=1$ under the condition $0<\alpha_{21}<8 \alpha_{11}, 0<\alpha_{12}<8 \alpha_{22}$. In recent years more and more attention have been given to system $\left(P_{0}\right)$ with other types of reaction term and some generalized three-species [11-13] as the following system (P):

$$
\begin{cases}u_{t}=\Delta\left[\left(E_{1}+\alpha_{11} u+\alpha_{12} v+\alpha_{13} w\right) u\right]+\left(a_{1}-b_{1} u-c_{1} v-d_{1} w\right) u, & (x, t) \in \Omega \times(0, \infty) \tag{P}\\ v_{t}=\Delta\left[\left(E_{2}+\alpha_{12} u+\alpha_{22} v+\alpha_{23} w\right) v\right]+\left(a_{2}-b_{2} u-c_{2} v-d_{2} w\right) v, & (x, t) \in \Omega \times(0, \infty) \\ w_{t}=\Delta\left[\left(E_{3}+\alpha_{13} u+\alpha_{23} v+\alpha_{33} w\right) w\right]+\left(a_{3}-b_{3} u-c_{3} v-d_{3} w\right) w, & (x, t) \in \Omega \times(0, \infty) \\ \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=\frac{\partial w}{\partial n}=0 & (x, t) \in \partial \Omega \times(0, \infty) \\ u(x, 0)=u_{0}(x) \geqslant 0, v(x, 0)=v_{0}(x) \geqslant 0, w(x, 0)=w_{0}(x) \geqslant 0, & x \in \bar{\Omega}\end{cases}
$$

In order to prove uniform boundedness and convergence of global solutions to the above system (P), we consider the following case for system (P):(A) $2 \alpha_{i i} \alpha_{j i}>\alpha_{i j}^{2}(i \neq j, i, j=1,2,3)$.

Where $\Omega=[0,1], u_{0}(x), v_{0}(x), w_{0}(x) \in W_{2}^{1}[0,1]$. In system (P) u, v, w are nonnegative functions which represent the population densities of three competing species. $\alpha_{i j}, E_{i} ; d_{i} ; a_{i} ; b_{i}>0(i, j=1,2,3) . E_{1}, E_{2}, E_{3}$ are the diffusion rates of the three species, respectively. a_{1}, a_{2}, a_{3} denote the intrinsic growth rates, b_{1}, c_{2}, d_{3} account for intra-specific competitions,

[^0]$b_{2}, d_{3}, c_{1}, d_{3}, d_{1}, d_{2}$ are the coefficients for inter-specific competitions, $\alpha_{11}, \alpha_{22}, \alpha_{33}$ denote self-diffusion, and $\alpha_{i j}(i \neq j, i, j=1,2,3)$ are cross-diffusion pressures. By adopting the coefficients $\alpha_{i j}(i, i, j=1,2,3)$, system (P) takes into account the pressures created by mutually competing species.

To describe results on system (P) we use the following notation throughout this paper.
Notation. Let Ω be a region in R^{n}. The norm in $L_{p}(\Omega)$ is denoted by $|\cdot|_{L_{p}(\Omega)}, 1 \leqslant p \leqslant \infty$. The usual Sobolev spaces of real valued functions in Ω with exponent $k \geqslant 0$ are denoted by $W^{k, p}(\Omega), 1 \leqslant p \leqslant \infty$. And $\|\cdot\|_{k, p}$ represents the norm in Sobolev spaces $W^{k, p}(\Omega)$. We shall use the simplified notation $\|\cdot\|_{k, p}$ for $W^{k, p}(\Omega)$ and $\mid \cdot \|_{p}$ for $L^{p}(\Omega)$.

The local existence of solutions to system (P) was established by Amamn [14-16]. According to his results system (P) has a unique nonnegative solution $(u(x, t), v(x, t), w(x, t)) \in C\left([0, T), W_{p}^{1}(\Omega)\right) \cap C^{\infty}\left((0, T), C^{\infty}(\Omega)\right)$, where $T \in(0, \infty]$ is the maximal existence time for the solution. The following results is due to Amamn [15].

Theorem 1.1. If $u_{0}(x), v_{0}(x), w_{0}(x) \in W_{p}^{1}(\Omega), \Omega \subset R^{n}$ is bounded, $p>n$. System (P) possesses a unique solution: $(u(x, t), v(x, t), w(x, t)) \in C\left([0, T), W_{p}^{1}(\Omega)\right) \cap C^{\infty}(\bar{\Omega} \times(0, T))$ for $\forall 0 \leqslant t<T$, where $p>n, 0<T<\infty$. If the solutions satisfy the estimates

$$
\sup _{0<t<T}\|u(., t)\|_{W_{p}^{1}(\Omega)}<\infty, \quad \sup _{0<t<T}\|v(., t)\|_{W_{p}^{1}(\Omega)}<\infty, \quad \sup _{0<t<T}\|w(., t)\|_{W_{p}^{1}(\Omega)}<\infty .
$$

then $T=\infty$.

Theorem 1.2 (Gagliardo-Nirenberg inequalities). Let $\Omega \in R^{n}$ be a bounded domain with $\partial \boldsymbol{\Omega} \in C^{m}$. For every function $u \in W^{m, r}(\Omega)(1 \leqslant q, r \leqslant \infty), D^{j} u(0 \leqslant j<m)$ satisfies the inequalities:

$$
\begin{equation*}
\left|D^{j} u\right|_{p} \leqslant C\left(\left|D^{m} u\right|_{r}^{a}|u|_{q}^{1-a}+|u|_{q}\right) \tag{1.1}
\end{equation*}
$$

where $\frac{1}{p}=\frac{j}{n}+a\left(\frac{1}{r}-\frac{m}{n}\right)+(1-a) \frac{1}{q}$.
for all a in the interval $\frac{j}{m} \leqslant a<1$, provided one of the following three conditions:
(1) $r \leqslant q$,
(2) $0<\frac{n(r-q)}{m r q}<1$,
(3) $\frac{n(r-q)}{m r q}=1$ and $m-\frac{n}{q}$ is not a nonnegative integer.
(The positive constant C depends only on n, m, j, q, r, a.)

Proof. We refer the readers to Theorem 10.1 in Part 1 of Friedman [17] for the proof of this well-known calculus inequality.

Corollary 1.3. There exists positive constants $c, c^{*}, c^{* *}$ such that for every function u in $H^{1}[0,1]$:

$$
\begin{align*}
& |u|_{2} \leqslant c\left(\left|u_{x}\right|_{2}^{\frac{1}{3}}|u|_{1}^{\frac{2}{3}}+|u|_{1}\right) \tag{1.2}\\
& |u|_{4} \leqslant c^{*}\left(\left|u_{x}\right|_{2}^{\frac{1}{2}}|u|_{1}^{\frac{1}{2}}+|u|_{1}\right) \tag{1.3}\\
& |u|_{5} \leqslant c^{* *}\left(\left|u_{x}\right|_{2}^{\frac{3}{\mid}}|u|_{2}^{\frac{7}{10}}+|u|_{2}\right) \tag{1.4}\\
& |u|_{\infty} \leqslant c^{* * *}\left(\left|u_{x}\right|_{2}^{\frac{1}{2}}|u|_{2}^{\frac{1}{2}}+|u|_{2}\right) \tag{1.5}
\end{align*}
$$

Proof. $\mathrm{n}=1, \mathrm{~m}=1, \mathrm{j}=0, \mathrm{r}=2, \mathrm{q}=1$ satisfy condition (2) in Theorem 1.2, thus (1.2) and (1.3) are correct. $\mathrm{n}=1, \mathrm{~m}=1, \mathrm{j}=0, \mathrm{r}=2, \mathrm{q}=2$ satisfy condition (1) in Theorem 1.2, thus (1.4) and (1.5) are correct.

Remark. From (1.5) we have a conclusion that

$$
\begin{equation*}
W_{2}^{1}([0,1]) \hookrightarrow C([0,1]) \tag{1.6}
\end{equation*}
$$

Lemma 1.4. For every function $u \in W^{2,2}([0,1])$ with $u_{x}(0)=u_{x}(1)=0$.

$$
\begin{equation*}
\left|u_{x}\right|_{2} \leqslant\left.\left|u_{x x}{ }_{2}^{\frac{1}{2}}\right| u\right|_{2} ^{\frac{1}{2}} \tag{1.7}
\end{equation*}
$$

https://daneshyari.com/en/article/6421547

Download Persian Version:
https://daneshyari.com/article/6421547

Daneshyari.com

[^0]: E-mail address: zyhong0827@aliyun.com

