Contents lists available at SciVerse ScienceDirect



Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

## Uniform boundedness and convergence of global solutions to a strongly-coupled parabolic system with three competitive species



## Yanhong Zhang

College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350108, PR China

| ARTICLE INFO                                                                            | A B S T R A C T                                                                                                                                                                                                                                                                                                                                                  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Keywords:<br>Strongly-coupled<br>Uniform boundedness<br>Convergence<br>Global solutions | Uniform boundedness and convergence of global solutions are proved for strongly-coupled parabolic systems with cross-diffusions dominated by self-diffusions in population dynamics, Gagliardo–Nirenberg inequalities are used in the estimates of solutions in order to establish $W_2^1$ -bounds uniform in time.<br>© 2013 Elsevier Inc. All rights reserved. |  |

## 1. Introduction and basic proposition

In an attempt to model spatial segregation phenomena between two competing species, Shigesada et al. [1] proposed the following quasilinear parabolic system ( $P_0$ ) in 1979:

| 1 | $\int u_t = \Delta [(d_1 + \alpha_{11}u + \alpha_{12}v)u] + (a_1 - b_1u - c_1v)u,$ | $(x,t) \in \Omega 	imes (0,\infty)$     |                   |
|---|------------------------------------------------------------------------------------|-----------------------------------------|-------------------|
|   | $v_t = \triangle[(d_2 + \alpha_{12}u + \alpha_{22}v)v] + (a_2 - b_2u - c_2v)v,$    | $(x,t) \in \Omega 	imes (0,\infty)$     | ( <b>D</b> )      |
| ١ | $\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0$                | $(x,t)\in\partial\Omega	imes(0,\infty)$ | (P <sub>0</sub> ) |
|   | $u(x,0) = u_0(x) \ge 0, \ v(x,0) = v_0(x) \ge 0$                                   | $x\in\overline{\Omega}$                 |                   |

so far the existence of nonnegative global solutions for system ( $P_0$ ) has been proved extensively in one or two dimension [2–10]. Shim [9] established the global uniform boundedness and convergence for system ( $P_0$ ) with n = 1 under the condition  $0 < \alpha_{21} < 8\alpha_{11}$ ,  $0 < \alpha_{12} < 8\alpha_{22}$ . In recent years more and more attention have been given to system ( $P_0$ ) with other types of reaction term and some generalized three-species [11–13] as the following system (P):

$$\begin{cases} u_{t} = \Delta[(E_{1} + \alpha_{11}u + \alpha_{12}v + \alpha_{13}w)u] + (a_{1} - b_{1}u - c_{1}v - d_{1}w)u, & (x,t) \in \Omega \times (0,\infty) \\ v_{t} = \Delta[(E_{2} + \alpha_{12}u + \alpha_{22}v + \alpha_{23}w)v] + (a_{2} - b_{2}u - c_{2}v - d_{2}w)v, & (x,t) \in \Omega \times (0,\infty) \\ w_{t} = \Delta[(E_{3} + \alpha_{13}u + \alpha_{23}v + \alpha_{33}w)w] + (a_{3} - b_{3}u - c_{3}v - d_{3}w)w, & (x,t) \in \Omega \times (0,\infty) \\ \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = \frac{\partial w}{\partial n} = 0 & (x,t) \in \partial\Omega \times (0,\infty) \\ u(x,0) = u_{0}(x) \ge 0, \ v(x,0) = v_{0}(x) \ge 0, \ w(x,0) = w_{0}(x) \ge 0, \quad x \in \overline{\Omega} \end{cases}$$
(P)

In order to prove uniform boundedness and convergence of global solutions to the above system (P),we consider the following case for system (P):(A)  $2\alpha_{ii}\alpha_{ji} > \alpha_{ij}^2$  ( $i \neq j, i, j = 1, 2, 3$ ).

Where  $\Omega = [0, 1]$ ,  $u_0(x)$ ,  $v_0(x)$ ,  $w_0(x) \in W_2^1[0, 1]$ . In system (P) u, v, w are nonnegative functions which represent the population densities of three competing species.  $\alpha_{ij}$ ,  $E_i$ ;  $d_i$ ;  $a_i$ ;  $b_i > 0$ (i, j = 1, 2, 3).  $E_1$ ,  $E_2$ ,  $E_3$  are the diffusion rates of the three species, respectively.  $a_1$ ,  $a_2$ ,  $a_3$  denote the intrinsic growth rates,  $b_1$ ,  $c_2$ ,  $d_3$  account for intra-specific competitions,

E-mail address: zyhong0827@aliyun.com

<sup>0096-3003/\$ -</sup> see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.06.061

 $b_2$ ,  $d_3$ ,  $c_1$ ,  $d_3$ ,  $d_1$ ,  $d_2$  are the coefficients for inter-specific competitions,  $\alpha_{11}$ ,  $\alpha_{22}$ ,  $\alpha_{33}$  denote self-diffusion, and  $\alpha_{ij}(i \neq j, i, j = 1, 2, 3)$  are cross-diffusion pressures. By adopting the coefficients  $\alpha_{ij}(i, i, j = 1, 2, 3)$ , system (P) takes into account the pressures created by mutually competing species.

To describe results on system (P) we use the following notation throughout this paper.

**Notation.** Let  $\Omega$  be a region in  $\mathbb{R}^n$ . The norm in  $L_p(\Omega)$  is denoted by  $|.|_{L_p(\Omega)}$ ,  $1 \leq p \leq \infty$ . The usual Sobolev spaces of real valued functions in  $\Omega$  with exponent  $k \geq 0$  are denoted by  $W^{k,p}(\Omega)$ ,  $1 \leq p \leq \infty$ . And  $||.||_{k,p}$  represents the norm in Sobolev spaces  $W^{k,p}(\Omega)$ . We shall use the simplified notation  $||.||_{k,p}$  for  $W^{k,p}(\Omega)$  and  $|.|_p$  for  $L^p(\Omega)$ . The local existence of solutions to system (P) was established by Amamn [14–16]. According to his results system (P) has

The local existence of solutions to system (P) was established by Amamn [14–16]. According to his results system (P) has a unique nonnegative solution  $(u(x, t), v(x, t), w(x, t)) \in C([0, T), W_p^1(\Omega)) \cap C^{\infty}((0, T), C^{\infty}(\Omega))$ , where  $T \in (0, \infty]$  is the maximal existence time for the solution. The following results is due to Amamn [15].

**Theorem 1.1.** If  $u_0(x)$ ,  $v_0(x)$ ,  $w_0(x) \in W_p^1(\Omega)$ ,  $\Omega \subset \mathbb{R}^n$  is bounded, p > n. System (P) possesses a unique solution:  $(u(x,t), v(x,t), w(x,t)) \in C([0,T), W_p^1(\Omega)) \cap C^{\infty}(\overline{\Omega} \times (0,T))$  for  $\forall 0 \leq t < T$ , where p > n,  $0 < T < \infty$ . If the solutions satisfy the estimates

$$\sup_{0 < t < T} \|u(.,t)\|_{W^1_p(\Omega)} < \infty, \quad \sup_{0 < t < T} \|v(.,t)\|_{W^1_p(\Omega)} < \infty, \quad \sup_{0 < t < T} \|w(.,t)\|_{W^1_p(\Omega)} < \infty.$$

then  $T = \infty$ .

**Theorem 1.2** (Gagliardo–Nirenberg inequalities). Let  $\Omega \in \mathbb{R}^n$  be a bounded domain with  $\partial \Omega \in \mathbb{C}^m$ . For every function  $u \in W^{m,r}(\Omega)(1 \leq q, r \leq \infty), D^j u(0 \leq j < m)$  satisfies the inequalities:

$$|D'u|_{p} \leq C\left(|D^{m}u|_{r}^{a}|u|_{q}^{1-a} + |u|_{q}\right)$$
(1.1)

where  $\frac{1}{p} = \frac{j}{n} + a(\frac{1}{r} - \frac{m}{n}) + (1 - a)\frac{1}{q}$ .

1

for all a in the interval  $\frac{j}{m} \leq a < 1$ , provided one of the following three conditions:

(1)  $r \leq q$ , (2)  $0 < \frac{n(r-q)}{mrq} < 1$ , (3)  $\frac{n(r-q)}{mrq} = 1$  and  $m - \frac{n}{q}$  is not a nonnegative integer.

.

(The positive constant C depends only on n, m, j, q, r, a.)

**Proof.** We refer the readers to Theorem 10.1 in Part 1 of Friedman [17] for the proof of this well-known calculus inequality.  $\Box$ 

**Corollary 1.3.** There exists positive constants  $c, c^*, c^{**}$  such that for every function u in  $H^1[0, 1]$ :

$$|u|_{2} \leq c \left( |u_{x}|_{2}^{\frac{1}{3}} |u|_{1}^{\frac{1}{3}} + |u|_{1} \right)$$
(1.2)

$$|u|_{4} \leq c^{*} \left( |u_{x}|_{2}^{\frac{1}{2}}|u|_{1}^{\frac{1}{2}} + |u|_{1} \right)$$

$$(1.3)$$

$$|u|_{5} \leq C^{**} \left( |u_{x}|_{2}^{\frac{3}{10}} |u|_{2}^{\frac{7}{10}} + |u|_{2} \right)$$

$$(1.4)$$

$$|u|_{\infty} \leqslant c^{***} \left( |u_{x}|_{2}^{\frac{1}{2}} |u|_{2}^{\frac{1}{2}} + |u|_{2} \right)$$
(1.5)

**Proof.** n = 1, m = 1, j = 0, r = 2, q = 1 satisfy condition (2) in Theorem 1.2, thus (1.2) and (1.3) are correct. n = 1, m = 1, j = 0, r = 2, q = 2 satisfy condition (1) in Theorem 1.2, thus (1.4) and (1.5) are correct.  $\Box$ 

**Remark.** From (1.5) we have a conclusion that

$$W_2^1([0,1]) \hookrightarrow C([0,1])$$
 (1.6)

**Lemma 1.4.** For every function  $u \in W^{2,2}([0,1])$  with  $u_x(0) = u_x(1) = 0$ .

$$|u_{x}|_{2} \leq |u_{xx}|_{2}^{\frac{1}{2}}|u|_{2}^{\frac{1}{2}}$$
(1.7)

Download English Version:

## https://daneshyari.com/en/article/6421547

Download Persian Version:

https://daneshyari.com/article/6421547

Daneshyari.com