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a b s t r a c t

The addition of surface tension to the classical Stefan problem for melting a sphere causes
the solution to blow up at a finite time before complete melting takes place. This singular
behaviour is characterised by the speed of the solid-melt interface and the flux of heat at
the interface both becoming unbounded in the blow-up limit. In this paper, we use numer-
ical simulation for a particular energy-conserving one-phase version of the problem to
show that kinetic undercooling regularises this blow-up, so that the model with both sur-
face tension and kinetic undercooling has solutions that are regular right up to complete
melting. By examining the regime in which the dimensionless kinetic undercooling param-
eter is small, our results demonstrate how physically realistic solutions to this Stefan prob-
lem are consistent with observations of abrupt melting of nanoscaled particles.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Solidification processes are modelled by moving boundary problems, called Stefan problems, which in their most simple
form involve solving the heat equation in both the solid and liquid domains subject to a so-called Stefan condition on the
solid-melt interface. This condition is an energy balance that describes the manner in which latent heat is released at the
interface. For classical well-posed solidification problems, we have the additional condition that the temperature u� on
the solid-melt interface is fixed to be the freezing temperature. Problems of this sort have been dealt with extensively in
the literature, the results of which are reported in books such as Gupta [39] and others [6,18,22,46]. There is the analytic
‘Neumann’ solution in one Cartesian coordinate [6,18,22,39,46], but otherwise practically useful exact solutions are extre-
mely rare. Of particular interest to the present study, we note that the classical radially-symmetric Stefan problem has no
known exact solution, but turns out to have a rather interesting asymptotic structure in the limit of complete freezing
(we shall refer to this limit as the extinction limit) [43,59,78,79]. Further formal results for this radially-symmetric problem
have been generated using a variety of numerical and analytical techniques [7,21,23,32,45,64,71]. Asymptotic studies of clas-
sical Stefan problems in more than one spatial variable exist, but are less common [49,57,58,86]. From a more rigorous per-
spective, much attention has been devoted to proving existence and uniqueness in one dimension (see [5,36,72], for
example) and higher dimensions [35,40].

An interesting and very well studied class of Stefan problems, which in their most basic form are ill-posed, arises from
modelling solidification of pure substances from an undercooled melt. One-dimensional problems of this sort have solutions
in which the speed of the solid-melt interface becomes infinite at some finite time [42,50,52]; in higher dimensions, the solu-
tions can exhibit more complicated forms of finite-time blow-up, for example via the birth of cusps or corners [44,84,85]. In
order to provide a physical regularisation for such ill-posed problems, we may apply the Gibbs–Thomson condition

0096-3003/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2013.12.003

⇑ Corresponding author.
E-mail address: scott.mccue@qut.edu.au (S.W. McCue).

Applied Mathematics and Computation 229 (2014) 41–52

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2013.12.003&domain=pdf
http://dx.doi.org/10.1016/j.amc.2013.12.003
mailto:scott.mccue@qut.edu.au
http://dx.doi.org/10.1016/j.amc.2013.12.003
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


u� ¼ u�mð1� r�K�Þ � ��v�n; ð1Þ

on the interface. Here the freezing temperature (the right-hand side of (1)) is not assumed to be simply equal to the constant
bulk freezing temperature, u�m, but instead is corrected by two regularising terms. The first, and most studied, involves sur-
face tension r�, which acts to penalise regions of the interface with high mean curvature K�. This term can be derived using
thermodynamic arguments by considering a system in equilibrium [55]. To take into account the departure from equilibrium
due to the moving solid-melt interface, a kinetic correction term is required. This kinetic correction is the second regularising
term in (1) and involves a parameter ��, referred to here as the kinetic undercooling parameter, multiplied by the interface’s
normal velocity v�n. The relationship between the melting temperature and the solidification rate represents an additional
driving force generated by undercooled liquid near the interface [1]. Condition (1) has also been considered as a linearised
version of a more complicated kinetic relationship [22,30,33]. In the past decade there have been numerous numerical stud-
ies of crystal formation using (1) with either �� > 0 or �� ¼ 0, with intricate descriptions of pattern and finger formation
[13,37,48,82]. Some details of existence and uniqueness for this class of Stefan problem are provided in [14,28,56].

The stability of Stefan problems with the Gibbs–Thomson condition have been examined by several authors by tracking
small perturbations of solutions for problems in one spatial dimension. Results for the surface-tension only case
(�� ¼ 0;r� > 0 in (1)) include the melting and freezing of a planar solid [8,90], propagation of a planar front into a super-
cooled liquid [54,73] and the growth of a spherical crystals [9,65]. Less attention has been paid to the kinetic undercooling
only case (�� > 0;r� ¼ 0) but there exists results for planar solidification [16,17]. Lastly, for Stefan problems with the full
Gibbs–Thomson condition (�� > 0 and r� > 0), we have stability results for planar problems [25,83] and spherical problems
[68,74].

The above studies on solidification also apply to melting problems since mathematically both melting and freezing prob-
lems are equivalent, the only difference arising from switching the sign of the temperature throughout. For example, the
asymptotic results for the classical well posed problem of freezing a spherical ball of liquid also describe the melting of a
spherical particle. Further, the results for the ill-posed crystal formation problem also apply for the ill-posed problem of
melting a superheated solid (for which there are fewer examples in nature). In the present paper we shall use the language
of melting, not freezing, for reasons that should become apparent, with the understanding that results hold for both cases.
Furthermore, we shall continue to use the term ‘‘kinetic undercooling parameter’’ for ��, even though the ‘‘undercooling’’
arises from freezing problems, not melting problems.

It has been observed that adding surface tension (via the Gibbs–Thomson condition with r� > 0 and �� ¼ 0) to the clas-
sical well-posed problem of melting a spherical particle has the unexpected result of introducing a singularity, with the
resulting problem exhibiting finite-time blow up [38,60,63]. The full two-phase problem takes into account temperature
variations in both the two phases, as depicted in the schematic in Fig. 1. The problem develops an infinite temperature gra-
dient in the inner solid phase [60,89] shortly after this inner phase becomes locally superheated (here we use the term ‘‘lo-
cally superheated’’ in the sense that the temperature in the solid phase is everywhere greater than the melting temperature;
this feature has also been noted in [34]). Similar observations have been made for a special class of initial conditions for
which the temperature profile of the outer phase is held at the spatially-dependent melting temperature
u� ¼ u�mð1� r�=r�Þ for all time, resulting in a one-phase problem which focuses on the inner phase [3,63]. This type of blow
up, characterised by an infinite temperature gradient in the inner phase and an unbounded moving front speed, appears to
be of the same nature as the finite-time blow-up of the one-dimensional Stefan problem for the freezing of a supercooled
liquid [3,24,42,50].

In the present paper we are concerned with extending a particular energy-conserving one-phase version of the radially-
symmetric melting problem with surface tension (i.e., with r� > 0 and �� ¼ 0), treated by Wu et al. [88], which also exhibits
an unbounded phase boundary speed at some finite time before the particle has completely melted. Our goal is to generalise
the work of Wu et al. [88] to include the full Gibbs–Thomson condition (1), with both nonzero surface tension r� > 0 and
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Fig. 1. A schematic of a melting particle with the dimensionless variables used in Section 2.1. The outer region (shaded) is the liquid melt layer which
surrounds the inner phase: the solid core. These two phases are separated by the moving front r ¼ sðtÞ, which propagates inwards during the melting
process. It is the temperature uðr; tÞ in the outer liquid phase that we are interested in here.
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