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method, a fixed stepsize numerical scheme is provided. Based on the method of fixed step-
size grid points, an Euler method is given. The convergence of the Euler method is consid-
ered and it is shown the Euler scheme is of mean square convergence with order 1/2. Then
the mean square exponential stability is studied. Using Lyapunov-like techniques, the suf-
ficient conditions to guarantee the mean square exponential stability are obtained. The
result shows that the mean square exponential stability may be reproduced by the Euler
scheme for linear ISDDEs, under the restriction on the stepsize. At last, examples are given
to illustrate our results.
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1. Introduction

In recent years, impulsive stochastic delay differential equations (ISDDEs) have been studied by many authors and a lot of
results have been reported, for example, see [1,2] and the references therein. Generally, the explicit solutions of the ISDDEs are
difficult to be obtained, thus it is necessary to develop numerical methods for ISDDEs and study the properties of these numer-
ical methods.

For impulsive differential equations, there are many results on the numerical methods. In 2007, Wu [3] first brought out an
Euler method for a random impulsive differential equation using a variable stepsize method. In the same year, in [4], the
stability of the Runge-Kutta methods was studied for a linear impulsive differential equation with constant coefficients, where
the authors also adopted the variable stepsize numerical scheme. Then these authors considered the nonlinear casein[5].In[6],
the authors considered some numerical methods for impulsive differential equations, where the interval length of the impul-
sive moments are assumed to be equal. This assumption makes the authors can take a fixed stepsize numerical scheme. In [7]
the authors considered the numerical stability and asymptotical stability of the implicit Euler method for a stiff impulsive
differential equation in Banach space where the variable stepsize numerical scheme was adopted.

The study of the numerical method for stochastic delay differential equations has been done for many years and a lot of
results were reported, see [8-12] and the references therein. For the impulsive delay differential equations, the authors pre-
sented a fixed stepsize Euler scheme and considered the convergence of this Euler method in [13]. Moreover, we should point
out that, for ISDDEs, in [ 14], the authors studied the exponential stability of the Euler method with fixed stepsize method. How-
ever, justas the casein [6],in that paper, the assumption of the length’s equality of each impulsive interval was imposed and the
length of the impulsive interval was asked to be equal to the delay. Both the assumptions yield a fixed stepsize numerical
scheme for ISDDEs, which also reduced the applications scale of the numerical scheme.
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In this paper, we generalize the method of [13] to the case of ISDDEs. First, we present a method to take the grid points
and this method yields a fixed stepsize numerical method for ISDDEs. Based on this method, we give an Euler method for the
ISDDEs. Then we consider the convergence of the Euler scheme and obtain the order of the convergence. The mean square
exponential stability of the Euler method is also studied and the sufficient conditions are obtained to guarantee the stability
by using the Lyapunov-like techniques. At last, numerical examples are given to illustrate our results.

For the convenience, we adopt the following standard notations:

(Q,F,{Ft},50,P) is a complete probability space with a filtration {F.},_ .., satisfying the usual conditions (i.e., the filtra-
tion contains all P-null sets and is right continuous). R = (—oo, +0), Rt = [0, +0),N = {1,2,...}. Given a positive integer m,
defineN_,, = {-m,-m+1,...,0}. PC(J; R) = {¢ : J — R, ¢(s) is continuous for all but at most countable points s € J and at
these points s € J, ¢(s*) and ¢(s™) exist and ¢(s*) = @(s)}, where J is a subset of R, ¢(s*) and ¢(s~) denote the right-hand
and left-hand limits of the function ¢(s) at time s respectively. PC’;'J ([-7,0]; R) denotes the family of all bounded Fo-measur-
able, PC-valued random variables. ||¢|| = sup_, ,<o{|¢(0)[}.

2. Preliminaries

In this paper, we will consider the following system:
{ dx(t) = [ax(t) + bx(t — 1)]dt + cx(t)dW(t), t =0, t+#t,
X(te) = Bix(ty),

where a,b,c,f, are constants, T>0 is the delay, x(t;)=lim.x(t). The impulsive moments {ti} satisfy:
O=to<t; <ty <---<ty<---and limy_ .ty = co. W(t) is an 1-dimension Brownian motion.
We impose the following initial data for system (2.1):

x(s) = ¢(s), se[-t,0], (2.2)
where ¢ € PC}. ([-7,0], R).
For the sake of simplicity, we do not consider the more general system:
dx(t) = [ax(t) + bx(t — 1)]dt + [cx(t) + dx(t — T)|[dW(t), t >0, ¢t+# ¢,
{X(tk) = Brx(ty),

there is no more essential difficulty to study the system (2.1) than to study system (2.3) except the complexity.
Now we state a lemma for system (2.1), it will be used in the sequel.

(2.1)

(2.3)

Lemma 2.1. For any given positive constant T, there exists an M > 0, such that the solution of system (2.1) with initial data (2.2)
satisfies:

Elx(t, )P <M, -t <t <T.

Proof. From the property of the impulsive moments, we know that, for a given T > 0, there exists a natural number N such
that ty < T < ty,1. By virtue of the exponential estimate theorem in [15] and the induction, we can get the required result
easily. O

To end this section, we give a lemma on the mean square exponential stability of system (2.1). It can be obtained directly
by the results of [1].

Lemma 2.2. [f the coefficients of system (2.1) satisfy:

2a+2|b|+c*<0, f>1 and (B2 —1) < o0, (2.4)
=1

=~

then the trivial solution of system (2.1) is mean square exponentially stable.

3. Convergence of Euler method

In this section, we first present a method to get the grid points for numerical scheme, which is a fixed stepsize method.
Based on this method, we derive the fixed stepsize Euler scheme for system (2.1), then we give the convergence result of the
Euler scheme.

Given a positive integer m, let h = X, and take the grid points for the numerical scheme as follows:

t t
el e(t)
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