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1. Introduction
In [1], Ostrowski introduced the following estimate:

Theorem 1.1. Let f : | — R be a mapping differentiable in the interior of an interval I. Suppose that a,b € Intl with a < b. If
If'(t)] < M for all t € [a,b], then we have
= 7)}(b—a)M for x € [a, b]. (1)

PX e o] < b-ay

This inequality can be applied to estimate the deviation of the value of a function from its mean on [a, b]. In the literature,
the inequality (1) has been extended and generalized in several different ways [2-17]. The concern of this paper is on the
inequalities of the Ostrowski-Griiss type [18-25]. This type of inequalities originates from the result of Dragomir and Wang
[18]:

b2
Lo

Theorem 1.2. Let I be an open interval and a,b € I with a<b. If f : 1 — R is a differentiable function such that there exist
constants y, T € R with y < f'(x) < T for x € [a, b], then
<< (b-a)(I —y) forallxceia,b). (2)

1 b f(b) - f(a) a+b
P(X)_m/af(t)dt_ b_a (X‘ ) ) S

The bound on the right hand side of (2) was then improved in [19] to 1 (b — a)(I" — y). Furthermore, it was also showed
that the constant § is sharp in the sense that it can not be replaced by a smaller number.

1

Recently, Feng and Meng gave a generalization of this type of Ostrowski-Griiss inequality. In [26], Feng and Meng con-
sidered an inequality for a division of the interval [a, b]:
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[h:a=Xo<X; < - <X_1<X=Db
and m; € [x;_1,%] fori=1,2,...k with my = a and my,; = b. They showed that
1 ¢ f(b) - f(a) b2 @&
- az Mg — my)f (x;) ——/f t)dt — (b) ({)(2 me X1 — Xi)

is bounded by (b — a)(I" — y) if one of the following two conditions holds:

(H1) there exists [x,] »Xi), J=1,2,... 11 such that [x; ,x;) NE"#0, [xi_,x)NE #0forj=1,2,....L, Efc U]I-’:] [xi_, . %)
and m(E") < &4,

(H2) there exists Xn_ o X)), J=1,2,..., such that (Xn,_, » Xn;) NE" 0, (X, X ) NE™ # 0 for
i=12,....L, E" C U) l[xnJ 1»Xn;) and m( ) < bse

Here m(-) denotes the measure of a Lebesgue measurable set, E* and E~ are the sets on which p(t,I;) > 0 and p(t,I;) < 0
respectively, with

t—ml—C, tE[X(),X1),
t—my—C, t € [x1,X2),

p(t, 1) = ?
t— Mi_1 — C, te [Xk,z,xk,]),
t—m—C, t e [Xk1,Xk,

where C =1(a+b) — ;1 S50 mi (X1 — X).
In the next section, we prove that the conclusion in [26] is still true without the additional conditions (H1) and (H2).
Another concern of this paper is to extend the Ostrowski-Griiss type inequalities to high dimension. A two-dimensional
extension was given in [26]. However, it is still not known whether this extension is sharp or not. In this paper, we give an-
other two-dimensional extension of the Ostrowski-Griiss inequality and show that our bound is sharp. This result will also
be presented in the next section.

2. Main results
The following lemma constitutes the main ingredient for the proof of the main result in this paper.

Lemma 2.1. Assume that x; € [a,b],i=1,2,..., k] :a=X9 <X; <--- <Xy_1 <X, =Db is a division of the interval [a,b], and
m; € [Xi_1,%;],i=1,2,...,k with mg = a and my., = b. Then we have the following two inequalities

b b
| maxipe.1,03de < 5imEF. [ min{p(e.1.0pde > 3 m(E P,
a a
where p(t,I,) is given by (3), E* and E- are the sets on which p(t,I;) > 0 and p(t,I;) < O respectively.
Proof. We first show that

/ " max{p(t.Jy). 0}t < 2 (e (@)

Denote the points t; < t; < --- < ty at which p(t,I) changes sign. Note that if p(b,I;) = 0, we take ty = b.
We first consider the case that p(a,I;) > 0. Since

pay)=a-m; —C<b—-m—C=p(b,l), (5)
then we get p(b,Iy) > 0. Notice that p(t,I;) jumps down at the discontinuous points, we can see that

0<p(tly) <t-m —C, telat] (6)
and

0<p(tIy) <(t—t), telttiq) foreveniandte [ty,b]. (7)

In particular,
b—my —C=p(b,Iy) < (b—ty). (8)
By using (5)-(8), we get that
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