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a b s t r a c t

This work investigates the adaptive network synchronization of different coupled chaotic
(or hyper-chaotic) systems with unknown parameters. The definition of network synchro-
nization is presented between the coupled systems where there are 2 N chaotic systems,
the former N systems are coupled each other and so are the later N systems. Then the suf-
ficient conditions for achieving this synchronization are derived based on the theory of the
stability theory of dynamical systems with 2 N coupled chaotic systems. By the adaptive
control technique, the control laws and the corresponding parameters update laws are pro-
posed such that this network synchronization of non-identical chaotic (or hyper-chaotic)
systems is to be obtained. These results obtained are in good agreement with the existing
one in open literature and it is shown that the technique introduced here can be further
applied to various network synchronizations between coupled dynamical systems. Finally,
all our analytic results are confirmed by extensive numerical simulations of the model.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

It has been repeatedly demonstrated by scientists in the last recent decades that nonlinear systems, which models our
real world, can display a variety of behaviors including chaos and hyperchaos. We could try controlling chaos for the benefit
of our applications. Synchronization or anti-synchronization of different chaotic or hyperchaotic systems has been one of the
few main control methods which are popularly discussed for several years. In recent years, there has been an dramatic atten-
tion among the scientists of mathematics, physics and engineering fields in the study of chaos synchronization between
chaotic systems, due to its useful applications in secure communication, power convertors, biological systems, information
processing and chemical reactions [1]. The main idea of synchronization between chaotic systems is to design a suitable
controller to control the response system such that the response system states track the master system states asymptoti-
cally. Until now, a lot of different control schemes have been developed for synchronization of chaotic systems, such as linear
feedback method [2], adaptive control[3,4], impulsive method [5], stochastic control [6], H1 approach [7], fuzzy logic control
[8], etc. Most of the works about synchronization have assumed that the parameters of chaotic systems are known before-
hand. However, the parameters of chaotic systems are inevitably perturbed by external factors in many real world applica-
tions and the values of them cannot be exactly known in advance. Therefore, investigation of synchronizing two chaotic
systems with fully unknown parameters has become a significant topic. Thus, some control schemes have presented for
chaos synchronization [9–11]. In particular, a necessary and sufficient condition for proper parameter identification which
is crucial for many practical applications in [12].
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It is increasingly recognized that organizing principles operate in most real networks [12]. Many social, biological, and
information systems can be well described by networks, where nodes represent individuals, biological elements (proteins,
genes, etc.), computers, web users, and so on, and links denote the relations or interactions between nodes. The study of
complex networks has therefore become a common focus of many branches of science [13]. Great efforts have been made
to understand the evolution of networks [14], the relations between topologies and functions [15,16], and the network char-
acteristics [17]. The synchronization of all dynamical nodes is one of the most significant and interesting properties in a com-
plex network. Therefore, the synchronization problem for complex dynamical networks has received increasing research
attention, and a great deal of results have been available in the literature [18–21].

In this letter, we propose a generalized adaptive network synchronization scheme based on the stability theory with fully
unknown parameters. There are 2 N chaotic (or hyperchaotic) systems on network. The former N node systems are coupled
each other and so are the later N node systems. The error systems of the network synchronization are constructed between
the former N nodes and the later N nodes. Then we use adaptive control to implement this particular kind of synchronization
with unknown parameters. Based on the above reason and the so-called lyapunov stability conditions for the continuous sys-
tems, we describe this kind of synchronization as generalized network synchronization with unknown parameters, which is
less restrictive but more practical.

The rest of this paper is organized as follows. The definition and the main results for the network synchronization are
provided in Section 2. An illustrative example is presented to show the effectiveness of the obtained scheme in Section 3.
Conclusion and discussion are finally given in Section 4.

2. Generalized network synchronization between the coupled chaotic (or hyperchaotic) systems

Consider the 2 N chaotic (or hyperchaotic) systems, the first N systems are described by

_xi ¼ fiðxiÞ þ FiðxiÞPi þ
XN

k¼1

Aikxk i ¼ 1;2; :::;N; ð1Þ

where xi ¼ ðxi1; xi2; :::; ximi
ÞT 2 Rmi is the ith state vector of the drive systems, mi is positive integer, fiðxÞ 2 CðRmi ;RmÞ including

nonlinear terms, Fi 2 CðRmi ;Rmi�li Þ; Pi 2 Rli as the vector of system parameters and Aik is mi �mk matrix. The other N response
systems with controllers are given by

_xNþi ¼ fNþið _xNþiÞ þ FNþiðxNþiÞPNþi þ
XN

k¼1

ANþi;NþkxNþi þ uNþi; i ¼ 1;2; ::;N; ð2Þ

where xNþi ¼ ðxNþi;1; xNþi;2; :::; xNþi;nNþi
ÞT 2 Rni is the i-th state vector of the response systems, ni is positive integer,

fNþi 2 CðRni ;Rni Þ including nonlinear terms, FNþi 2 CðRni ;Rni�lNþi Þ;PNþi 2 RlNþi as the parameter vector of the response system,
ANþi;Nþk is ni � nk matrix and uNþi 2 Rni is the controller. Xi 2 Rhi�hi is the positive definite matrix with the suitable order,
Q i 2 Rhi�mi and Si 2 Rhi�ni (i = 1,2,. . .,N). Then the purpose is to design a controller uðu 2 Rni Þ which is able to synchronize
the 2 N chaotic (hyper-chaotic) systems with identical or non-identical orders on network. The observable variables of sys-
tem (1) and system (2) are Q ixi and SixNþi, respectively. Then the ith error system is

eiðtÞ ¼ Q ixi � SixNþi; i ¼ 1;2; :::;N; ð3Þ

where Q i and Si stand for the previous mentioned matrixes, hi 6minðmi;niÞ and each Si exists the inverse matrix (or the right
inverse matrix). It is easy to know that ei 2 Rhi ði ¼ 1;2; :::;NÞ.

Let

ui ¼ �fNþiðxNþiÞ � FNþiðxNþiÞP̂Nþi �
XN

k¼1

ANþi;NþkxNþk þ S�1
i Q i fiðxiÞ þ FiðxiÞP̂i þ

XN

k¼1

Aikxk

 !
þXiei

 !
; ð4Þ

where Xi is the hi -order positive definite matrix, P̂i and P̂Nþi are the estimated parameters. Further, the ith error system is

_eiðtÞ ¼ Q i _xi � Si _xNþi ¼ �Q iFiðxiÞ~Pi þ SiFNþiðxNþiÞ~PNþi �Xiei; ð5Þ

where ~Pi ¼ P̂i � Pi and ~PNþi ¼ P̂Nþi � PNþiði ¼ 1;2; :::;NÞ. For convenience, we introduce the following symbols,

xðtÞ¼ ðxT
1ðtÞ;xT

2ðtÞ; . . . ;xT
NðtÞÞ

T
; yðtÞ¼ ðxT

Nþ1ðtÞ;xT
Nþ2ðtÞ; . . . ;xT

2NðtÞÞ
T
;

eðtÞ ¼ ðeT
1ðtÞ;eT

2ðtÞ; . . . ;eT
NðtÞÞ

T
; Q ¼ diagfQ 1;Q 2; . . . ;QNg; S¼ diagfS1;S2; . . . ;SNg;

S�1 ¼ diagfS�1
1 ;S�1

2 ; . . . ;S�1
N g; PA ¼fP1;P2; . . . ;PNg; PB ¼fPNþ1;PNþ2; . . . ;P2Ng;

fA ¼ diag f1ðx1Þþ
XN

k¼1

A1kxk; f2ðx2Þþ
XN

k¼1

A2kxk; . . . ; fNðxNÞþ
XN

k¼1

ANkxk

( )
;

fB ¼ diag fNþ1ðxNþ1Þþ
XN

k¼1

ANþ1;Nþkxk; fNþ2ðxNþ2Þþ
XN

k¼1

ANþ2;NþkxNþk; . . . ; f2Nðx2NÞþ
XN

k¼1

A2N;NþkxNþk

( )
;

FA¼ diagfF1ðx1Þ;F2ðx2Þ; . . . ;FNðxNÞg; FB ¼ diagfFNþ1ðxNþ1Þ;FNþ2ðxNþ2Þ; . . . ;F2Nðx2NÞg;

X¼ diagfX1;X2; . . . ;XNg; ~PA ¼ð~P1;~P2; . . . ;~PNÞ
T
; ~PB ¼ð~PNþ1;~PNþ2; . . . ;~P2NÞ

T
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