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a b s t r a c t

In this paper, we propose some special collocation schemes for solving Hilbert type singu-
lar and hypersingular integral equations on a circle, based on the superconvergence of
quadrature rules for evaluating the corresponding singular integrals. With the aid of spec-
tral analysis, the optimal and suboptimal L2 error estimates are established in a unified
framework. At last, several numerical examples are provided to confirm the theoretical
analysis.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Consider the singular integral equation

HuðsÞ ¼
Z 2p

0
jðt � sÞuðtÞdt ¼ gðsÞ; s 2 ð0;2pÞ; ð1Þ

where gðsÞ is a given function, uðtÞ is unknown density function, jðtÞ is a singular integral kernel, may be 1
2p cot t

2 or 1
4p sin2ðt=2Þ

and all of them are 2p-periodic. If jðtÞ ¼ 1
2p cot t

2, (1) is often called as Hilbert singular integral equation, and the integral in
the left side must be understood in Cauchy principal value sense. If jðtÞ ¼ 1

4p sin2ðt=2Þ
, (1) becomes a hypersingular integral

equation, and the integral in the left side must be understood in Hadamard finite part sense. Such equations are frequently
encountered in physical and engineering applications, such as in fracture mechanics, elasticity problems, aerodynamics as
well as electromagnetic scattering [6,7].

Numerous works have been devoted in developing efficient numerical methods for the solution of such equations. For
example, Chandler [3] studied a Cauchy singular integral equation on a smooth closed curve by using a simple midpoint col-
location method, and some convergence results, but not optimal, were obtained. By using spectral analysis, Yan [12,13] pro-
vided the convergence analysis of the midpoint collocation method for solving boundary integral equations with logarithmic
kernel on a closed boundary. Based on trigonometric interpolation, a fully discrete method was suggested for solving the
hypersingular boundary integral equation arising from scattering problem by Kress [6], where an exponential convergence
rate was proved for analytic boundaries and boundary data. Mülthei and Schenider [10] proposed a fully discrete collocation
scheme on graded mesh for solving Hilbert singular integral equations, and some convergence results in sup-norms and
weighted L2-norms were obtained. Schneider investigated the stability of the pseudo-inverse of discretized Hilbert transform
in [11]. In [4], a unified framework for various collocation methods of numerical solutions of Hilbert singular integral equa-
tions were established. A fast Fourier–Galerkin method for solving a class of singular boundary integral equations was devel-
oped in [2] by compressing the dense Galerkin matrix to a sparse one. In [5], the authors studied a collocation scheme based
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on the superconvergence result of midpoint rule for solving hypersingular integral equation on a circle, where the optimal
error estimate was established by analyzing the properties of the scheme’s coefficient matrix.

In this paper, we extend the spectral analysis proposed in [12] to analyze the collocation method based on the supercon-
vergence results of midpoint and trapezoidal rules for solving (1). Superconvergence analysis of Newton–Cotes rules for sin-
gular integrals has been investigated in depth for the past few years [9,15,16,19]. However, up to now, most of these are
restricted on the analysis of the quadrature rules for singular integrals. Only a few error estimates have been obtained for
the solution of singluar integral equations, such as in [5,17], where the optimal convergence rates in maximum norm were
obtained, but the analytic process rely on the properties of the resulted matrix too much. Through the spectral analysis, we
investigate the error estimates in a unified framework, where the eigenvalues of the considered schemes can be expressed
explicitly, and thus the spectral norm of the resulted coefficient matrices can be bounded. Combined with the superconver-
gence results of the quadrature rules, the optimal and suboptimal discrete L2 error estimates are established.

The rest of this paper is organized as follows. In Section 2, we propose the collocation schemes for the solution of (1) in a
unified way and then the general result is given. The error estimates are given for Hilbert singular integral equation and
hypersingular integral equation in Sections 3 and 4, respectively. Then, we provide the proof of superconvergence results
of midpoint rule for evaluating Hilbert singular integrals in Section 5. Finally, several numerical examples are presented
to confirm our theoretical analysis.

2. General result

For simplicity of exposition, we confine ourselves to the case where 0 ¼ t0 < t1 < t2 < � � � < tn ¼ 2p is a uniform mesh of
½0;2p� with the mesh size h ¼ 2p=n. Denote the interpolation of u by

PhuðtÞ ¼
Xn�1

j¼0

uðpjÞvjðtÞ; ð2Þ

where pj 2 ½tj; tjþ1Þ denote the interpolation points and vj the corresponding basis function. For example, if pj is chosen as
t̂j ¼

tjþtjþ1
2 and

vjðtÞ ¼
1; on ½tj; tjþ1�;
0; otherwise;

�
ð3Þ

Phu is the piecewise constant interpolation of u; if pj is chosen as tj and

vjðtÞ ¼

t�tj�1
h ; on ½tj�1; tj�;

tjþ1�t
h ; on ½tj; tjþ1�;

0; otherwise

8><
>: ð4Þ

with t�1 þ 2p ¼ tn�1, then Phu is the piecewise linear interpolation of u. Substituting Phu with u defined in (1) yields the
quadrature rule of Hu

QhuðsÞ ¼
Z 2p

0
jðt � sÞPhuðtÞdt ¼

Xn�1

j¼0

-jðsÞuðpjÞ ¼ HuðsÞ þ EuðsÞ; ð5Þ

where Eu denotes the error functional and

-jðsÞ ¼
Z 2p

0
jðt � sÞvjðtÞdt

is the quadrature coefficient. Applying the rule (5) to approximate the integral in (1), we get

Xn�1

j¼0

-jðsÞuðpjÞ � gðsÞ: ð6Þ

Then, collocating this equation at the points si 2 ðti; tiþ1Þ yields

Xn�1

j¼0

-jðsiÞuj ¼ gðsiÞ; i ¼ 0;1; . . . ; n� 1; ð7Þ

where uj denote the approximate value of u at the point pj. For the sake of analysis, we rewrite it into the matrix form

Aua ¼ ge; ð8Þ

where
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