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a b s t r a c t

One of the most studied problems in numerical analysis is the approximation of nonlinear
equations using iterative methods. In the last years, attention has been paid in studying
Newton’s method on manifolds. In this paper, we generalize this study considering some
Newton-type iterative methods. A characterization of the convergence under Kantorovich
type conditions and optimal estimates of the error are found. Using normal coordinates the
order of convergence is derived. The sufficient semilocal convergence criteria are weaker
and the majorizing sequences are tighter for the special cases of simplified Newton and
Newton methods than in earlier studies such as Argyros (2004, 2007, 2008) [6,8,12] and
Kantorovich and Akilov (1964) [32].

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let us suppose that F is an operator defined on an open convex subset X of a Banach space E. Let us denote by DFðxnÞ the
first Fréchet derivatives of F at xn.

Given an integer m and an initial point x0 2 E, we move from xn to xnþ1 through an intermediate sequence fyi
ng

m
i¼0; y0

n ¼ xn,
which is a generalization of Newton (m ¼ 1) and simplified Newton (m ¼ 1) methods

y1
n ¼ y0

n �DFðy0
nÞ
�1Fðy0

nÞ;
y2

n ¼ y1
n �DFðy0

nÞ
�1Fðy1

nÞ;
..
.

ym
n ¼ xnþ1 ¼ ym�1

n �DF y0
n

� ��1F yðm�1Þ
n

� �
:

8>>>>>><>>>>>>:
This family of methods was introduced by Shamanskii [43]. Under appropriate conditions, these iterative methods

converge to a root x� of the equation FðxÞ ¼ 0. Moreover, if x0 is sufficiently near x� the method has order of convergence
at least mþ 1. See [33,38,43,46]. In particular, Notice that in [38] a modification ofDFðxnÞ at each sub-step. In [39–41], Parida
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and Gupta provided some recurrence relations to establish a convergence analysis for a third order Newton-type methods
under Lipschitz or Hölder conditions on the second Fréchet derivative. A modification of the approach used in [39] and some
applications are presented by Chun et al. [19]. Recently, Argyros and Ren [17] expanded the applicability of Halley’s method
using a center-Lipschitz condition on the second Fréchet derivative instead of Lipschitz’s condition.

On the other hand, in the last years, attention has been paid in studying Newton’s method on manifolds, since there are
many numerical problems posed on manifolds that arise naturally in many contexts. Some examples include eigenvalue
problems, minimization problems with orthogonality constraints, optimization problems with equality constraints, invari-
ant subspace computations. See for instance [1–3,7,15,20,21,27,29,35,36,48,49]. For these problems, one has to compute
solutions of equations or to find zeros of a vector field on Riemannian manifolds.

The study about convergence matter of iterative methods is usually centered on two types: semilocal and local
convergence analysis. The semilocal convergence matter is, based on the information around an initial point, to give criteria
ensuring the convergence of iterative methods; while the local one is, based on the information around a solution, to find
estimates of the radii of convergence balls. There is a plethora of studies on the weakness and/or extension of the hypothesis
made on the underlying operators; see for example [4–6,12,14,32,34,48,49].

The semilocal convergence analysis of Newton’s method is based on celebrated Kantorovich theorem [10,11,23–
26,30,31,42]. This theorem is a fundamental result in numerical analysis, e.g., for providing an iterative method for
computing zeros of polynomials or of systems of nonlinear equations. Moreover, this theorem is a very usefull result in non-
linear functional analysis, e.g., for establishing that a nonlinear equation in an abstract space has a solution. Let us recall
Kantorovich’s theorem in a Banach space setting.

Theorem 1 [32]. Let E be a Banach space, X # E be an open convex set, F : X�!X be a continuous operator, such that, F 2 C1 and
DF is Lipschitz on X

kDFðxÞ � DFðyÞk 6 lkx� yk; for all x; y 2 X; l > 0:

Suppose that for some x0 2 X; DFðx0Þ is invertible and that for some a > 0 and b P 0:

kDFðx0Þ�1k 6 a;

kDFðx0Þ�1Fðx0Þk 6 b;

h ¼ abl 6
1
2

ð1Þ

and

Bðx0; t�Þ# X where t� ¼
1
a l

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h
p� �

:

If

vk ¼ �DFðxkÞ�1FðxkÞ;
xkþ1 ¼ xk þ vk:

Then fxkgk2N # Bðx0; t�Þ and xk�!p�, which is the unique zero of F in B½x0; t��. Furthermore, if h < 1
2 and Bðx0; rÞ# X with

t� < r 6 t�� ¼
1
a l

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h
p� �

;

then p� is also the unique zero of F in Bðx0; rÞ. Also, the error bound is:

kxk � x�k 6 ð2hÞ2
k b

h
; k ¼ 1;2; . . .

Although the concepts will be defined later on, to extend the method on Riemannian manifolds, preliminarily we will say
that the derivative of F at xn is replaced by the covariant derivative of X at pn:

rð�ÞXðpnÞ : Tpn
M�!Tpn

M

v�!rY X;

where Y is a vector field satisfying YðpÞ ¼ v . We adopt the notation DXðpÞv ¼ ryXðpÞ; hence DXðpÞ is a linear mapping of
TpM into TpM. So, in this new context

�F 0ðxnÞ�1FðxnÞ

is written as

�DXðpnÞ
�1XðpnÞ
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