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a b s t r a c t

In Cai and Zhang (2009, 2010) [12,13], they introduced the recovery-based a posteriori
error estimator for conforming, mixed, and nonconforming finite element methods of
interface problems. In this paper, we extend the idea to present a recovery-based a poster-
ior error estimator for finite volume methods which employ the nonconforming linear trial
functions to approximate elliptic interface problems. The method recovers the flux and gra-
dient in HðdivÞ and HðcurlÞ conforming finite element spaces with a weighted L2 projection,
respectively. The reliability and efficiency bounds are established. Numerical experiments
are given to support the conclusions.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The finite volume method (FVM) is a discretization technique for solving partial differential equations (PDEs). Due to the
property of local conservation of the interested quantity, FVM is widely used in many fields of engineering such as compu-
tational fluid dynamics.

An a posteriori error estimate is an important procedure for adaptivity methods. It uses numerical solution and several
known data to estimate the error between the exact solution and the numerical solution. By the usage of computable quan-
tities which can reflect the quality of numerical methods, it can be used as an indicator to refine the mesh where has large
error, and thus reduce the computational error efficiently. There are two kinds of a posteriori error estimators: one is resid-
ual-based error estimator (see [10,28,35,4,8,20,7,15,6]) and the other is recovery-based error estimator (see [21,29,27]). The
recovery-based methods have been widely used in engineering, and studied by many researchers, (for example
[2,3,9,30,33,34,36,18]), because of their many appealing properties.

The purpose of this paper is to derive a recovery-based a posteriori error estimator for finite volume methods of solving
interface problems. Interface problems with discontinuous coefficients are the popular examples in material sciences and
fluid dynamics, for example two distinct materials or fluids with different conductivities, densities or diffusions. Cai and
Zhang introduced the recovery-based a posteriori error estimate for interface problems by conforming finite element meth-
ods [12] and mixed and nonconforming finite element methods [13]. The same problem is studied for conforming finite vol-
ume methods in [23]. Also it is studied in [12,13] for finite element methods. In this paper, we will extend the idea to
nonconforming trial functions for finite volume methods. The error estimator is derived by using the flux and gradient,
which are recovered in HðdivÞ and HðcurlÞ conforming finite element spaces, respectively. With an assumption on the mono-
tonicity distribution of the coefficients, both the reliability and efficiency constants are proved to be independent of the size
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of jumps, the new estimators are robust with respect to the diffusion coefficients. The numerical experiments are provided
on classical problems.

This paper is organized as follows. In Section 2, function spaces and preliminaries are introduced. In Section 3, the non-
conforming linear finite volume approximation for interface problems are derived. In Section 4, we present the recovery pro-
cedure and the resulting recovery-based a posteriori error estimator. In Section 5, the a posteriori error analysis is derived.
Finally, in Section 6, we give numerical results to support our analysis.

2. Function spaces and preliminaries

Let X be a bounded polygonal domain in R2 with boundary @X. For a two dimensional vector-valued function s ¼ ðs1; s2Þt ,
and a scalar-valued function v, the divergence, curl, and vector curl operators are defined as following

r � s :¼ @s1

@x1
þ @s2

@x2
; r� s :¼ @s2

@x1
� @s1

@x2
; and r?v ¼ � @v

@x2
;
@v
@x1

� �t

:

The standard notations and definitions will be adopted for the Sobolev spaces (see [1]): HsðKÞ; Hsð@KÞ (s P 0) and inner
products ð�; �Þs;K ; ð�; �Þs;@K , norms k � ks;K ; k � ks;@K and semi-norms j � js;K , (s P 0), where K � X. If s ¼ 0; H0ðKÞ ¼ L2ðKÞ, in which
case the inner product is denoted by ð�; �ÞK . If K ¼ X, we drop K.

Moreover, the following Hilbert spaces will be used:

Hðdiv ; XÞ ¼ fs 2 L2ðXÞ2 : r � s 2 L2ðXÞg

and

Hðcurl; XÞ ¼ fs 2 L2ðXÞ2 : r� s 2 L2ðXÞg;

equipped with the norms

kskHðdiv;XÞ :¼ ksk2
0;X þ kr � sk2

0;X

� �1
2

and kskHðcurl;XÞ :¼ ksk2
0;X þ kr� sk2

0;X

� �1
2
:

Denote the subspace by

H0ðcurl; XÞ ¼ fs 2 Hðcurl; XÞ : s � tj@X ¼ 0g;

where t is the unite vector clockwise tangent to the boundary @X.
Finally, the following formula of integration by parts will be used

ðr � s;vÞ þ ðs;r?vÞ ¼
Z
@X
ðs � tÞvds; ð2:1Þ

for all s 2 Hðcurl; XÞ and all v 2 H1ðXÞ.

3. Interface problems and finite volume approximation

Consider the following interface problem

�r � ðkðxÞruÞ ¼ f in X; ð3:1Þ

u ¼ 0 on @X; ð3:2Þ

where f is a given scalar-valued function. Here kðxÞP 0 is piece-wise constant on polygonal sub-domains of
Xi � X ði ¼ 1; . . . ;nÞ and accepts possible large jumps across sub-domain boundaries (interfaces). Define

kmin ¼ min
16i6n

ki and kmax ¼max
16i6n

ki:

In order to define the FVM, we need two different partitions of the domain X. One is called the primal partition, which is
associated with the trial function space. The other one is a dual partition, which is associated with the test function space. Let
T h be a quasi-uniform triangulation of X with diamðKÞ 6 h; 8K 2 T h. Furthermore, assume that the interfaces
F ¼ f@Xi \ @Xjji; j ¼ 1; . . . ;ng do not cut through element K 2 T h. We obtain the dual mesh T �h of T h for the test function
space as follows: each element in T �h is made up of two subtriangles which share a common edge (see Fig. 1). These subtri-
angles are formed by connecting the barycenter and the two corners of the triangles. In Fig. 1, the control volume for point P
is the hull EB1CB2. Let Eh denote the union of the boundaries of the triangles K 2 T h; E0

h :¼ Eh n @X. Moreover, denote
kK ¼ kðxÞjK ; 8K 2 T h.

Let PlðKÞ be the space of polynomials of degree l on element K. Define conforming and nonconforming piecewise linear
spaces by

Vc ¼ fv 2 H1
0ðXÞ : v jK 2 P1ðKÞ; 8K 2 T hg
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