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ARTICLE INFO ABSTRACT

Keywords: We describe a method for evaluating both the Fibonacci-Horner and the polynomial
Binet formula decomposition of the principal matrix logarithm, with a view to solve the lifting problem
Fibonacci-Horner basis of its explicit computation. The Binet formula for linear recursive sequences serves as a
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triggering factor for giving the exact formula. We supply some illustrative examples.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The logarithms of a matrix appear in various fields of mathematics, applied sciences and engineering. Many methods and
algorithms are expanded in producing their representations (see [7,9-11,15,18] and references therein). In contrast with the
matrix exponential, the definition of the matrix logarithms reveals some significant difficulties. Indeed, for a matrix B in the
algebra of square matrices, My(IK) (I = R or C), the problem consists in finding a matrix X € My(K) satisfying the matrix
equation eX = B. Any solution of this equation, denoted by X = log(B), is called logarithm of B. A matrix B € My(K) has a log-
arithm (not necessary real) if and only if B is nonsingular. Nevertheless, the equation e¥ = B may have infinitely many solu-
tions; see e.g. [7,9-11]. By way of contrast, if B has no eigenvalues on the closed negative real axis, among its infinitely many
logarithms, there exists a unique logarithm X called the principal logarithm of B and denoted by X = Log(B). This unique ma-
trix logarithm has all its eigenvalues into the horizontal strip determined by the condition {;(X) € C : [Im(4(X))| < 7} (see
[7,10,11,15]). Meanwhile, the simplest manner to define the principal matrix logarithm is a power series. This definition is
based on the fact that the function log(z) = Log|z| + iarg(z) is analytical in its principal branch, |z| > 0 and |Im(log(z))| < .
The series Log(z) = —> >, 1=2, in the unit disk centered at zy = 1, can be applied to define the principal matrix logarithm

as Log(B) = —>_p°, B for r\l|1,j —-B|<1.

The computation of the principal matrix logarithm stills an exciting area, and the main purpose here is to provide meth-
ods in order to compute exactly the principal logarithm of a matrix B € GL(d, C) under some general conditions, where
GL(d, C) represents the group of invertible matrices of order d. The quote part of our study is exhibited in the usage of tech-
niques involving elementary properties of linear Fibonacci sequences and their Binet formula, which allows us to establish a
simpler and explicit formula of the principal matrix logarithm. Our methods are based on the knowledge of an annihilator
polynomial R(z) =z" —apz ' —---—a, 1 of A=1I;—B, and the Fibonacci-Horner decomposition of its power matrices
A".n € N. Our development is released from the general properties of the linear recurrence relations and the Cayley-Ham-
ilton Theorem (Section 2). We introduce the Binet formula for the solutions of linear recurrence relations to obtain an ana-
lytical and exact formula for the principal logarithm of a matrix in its Fibonacci-Hérner basis (Section 3). Over and above,
illustrative examples, remarks, and comparisons with other known representations for the principal matrix logarithm are
also provided.
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2. Decompositions of the principal matrix logarithm via recursive relations

2.1. Fibonacci-Hérner decomposition and recursiveness

Let A€ My(C) and R(z) =2z" — apz"~! —--- — a, 1 a polynomial such that R(A) = ®, (the zero matrix of order d), with

2 < r < d to avoid trivialities. Following [3,5,13], we have
A= unAO + un—lAl ot un—rHAr—ly forn > 0 (1)
where the sequence {u,},. ., is defined by uo = 1, u_r =+~ =ty = 0,and Un = Yy ooty ,om Spr il ag - a1, for

m > 1, represents its combinatorial expression. Moreover, as shown in [3,4,13], the sequence {u,},. ,,, satisfies the linear
recursive relation of order r,

Uny1 = Goln + -+ + Gr_qUn_ry1, fOrn =0, (2)
with constant coefficients ag,ay,---,a,_ (see [2,8], for example). Sequences (2) are known in the literature as r-generalized
Fibonacci sequences. The set of matrices Ag = I,A1,...,Ar_1 from (1) is the so-called Fibonacci-Hérner basis associated to the
matrix A,

Ao =g, A=A — oA — . — aialy, (viz A = AAict — aala) (3)

for 1 < k <r—1(see [4,13]). Expression (1) is the so-called Fibonacci-Horner decomposition of the power matrix A" (see [5]).
Furthermore, the polynomial decomposition of A" (for n > r) in its power basis {A°® obtained by a straightforward
computation, is

r—1 p
= Z (Zarp+j1unrj>Ap7 (4)
j=0

}Ogsgr—l ’

(see Proposition 3.1 of [4] and Corollary 2.2 of [13]). For computing explicit representations of the Fibonacci-Hérner decom-
position (1) and the polynomial decomposition (4) of the power matrices A", the expression of u,, (m > 1) are obtained
recursively by using (2). However, we can also get these coefficients by giving (2) under a determinantal form. That is, for
m > 1, the determinantal representation of u, using a m x m upper Hessenberg matrix [12,18], is as follows

g ay ... 0ayq 0 ... 0
-1 a ... ¢, a1 ... O
Un = _ (5)
0 0 g
0 0 -1 a
Note that for r + 1 < m, Expression (5) results from the determinant of a Toeplitz (r + 1)-banded matrix.

Remark 2.1. The powers of singular matrices A € My(C) are also included in the representation (1). For such matrices the
polynomial R(z) accomplishes a,_; = 0. Its Fibonacci-Hoérner decomposition is provided by considering in the relation (2) the
zero coefficient a,_1; see Example 3.2 for more details.

Although the following result is no longer used in the following, drawing one’s inspiration from the representation (5) of
u,,, we propose a new determinantal representation for the n-th power matrix A" (n > r) in the power basis.

Proposition 2.2. Under the preceding data we have,

1k r-1- k
Zun rJrlAr ) Zun r+1 ) (6)

k=0

where u +1’ the determinant of a (n — r + 1) (n —r+ 1) matrix, is as the u, .., given in Expression (5), but with the first row
shifted k positions forward, [12]. Note that u® 1 = Un_ry1 IS as given in (5).

n— r+

Proof. By mathematical induction. Since R(A) = @y, the result for A" is trivial. We assume that A""! has the following rep-
resentation in the power basis, A" = Z; Lul¥ A" 1* Therefore, using the induction, we get

-2

r—1

0 k —k 1-k (k+1) or—1-k

A" =uP AT+ U AT = E e D i
k=1

k=0

N
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