Bifurcation from double eigenvalue for nonlinear equation with third-order nondegenerate singularity

Qiang Zhang ${ }^{\text {a,b,*, }}$ Dongming Yan ${ }^{\text {b,c }}$, Zhigang Pan ${ }^{\text {b,d }}$
${ }^{\text {a }}$ School of Computer Science, Civil Aviation Flight University of China, Guanghan, Sichuan 618307, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Sichuan University, Chengdu, 610064, PR China
${ }^{\text {c }}$ School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou, 310018, PR China
${ }^{\text {d }}$ College of Mathematics, Southwest Jiaotong University, Chengdu, 610031, PR China

A R T I C L E IN F O

Keywords:

Nonlinear equation
Bifurcation
Eigenvalue
Lyapunov-Schmidt
Singularity

Abstract

In this paper, the steady state bifurcation from a double eigenvalue for nonlinear equation with singularity being second-order fully degenerate and third-order nondegenerate is investigated. By the normalized Lyapunov-Schmidt reduction method, the precise criteria for the existence and nonexistence of bifurcation and the topological properties of regular bifurcated branches are obtained.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let X_{1} and X be two banach spaces, and $X_{1} \subset X$ be a dense and compact inclusion. The main objective of this article is to give the precise criteria for the existence and nonexistence of bifurcation and the topological properties of regular bifurcated branches for the following nonlinear equation:

$$
\begin{equation*}
L_{\lambda} u+G(u, \lambda)=0 \tag{1}
\end{equation*}
$$

where $L_{\lambda}=-A+B_{\lambda}: X_{1} \rightarrow X$,
$A: X_{1} \subset X$ a linear homeomorphism,
$B_{\lambda}: X_{1} \rightarrow X$ a linear compact operator depending continuously on $\lambda \in \mathbf{R}$,
$G(, \lambda): X_{1} \rightarrow X$ a C^{∞} operator depending continuously on $\lambda \in \mathbf{R}$, satisfying

$$
G(u, \lambda)=G_{2}(u, \lambda)+G_{3}(u, \lambda)+o\left(\|u\|_{X_{1}}^{3}\right),
$$

where $G_{2}: X_{1} \times X_{1} \rightarrow X$ is a two-multiple linear mapping,
$G_{3}: X_{1} \times X_{1} \times X_{1} \rightarrow X$ is a three-multiple linear mapping, and $G_{2}(u, \lambda)=G_{2}(u, u, \lambda), G_{3}(u, \lambda)=G_{3}(u, u, u, \lambda)$.
The bifurcation theory for nonlinear eigenvalue problems was initiated by Krasnoselskii [3] and Rabinowitz [4]. They give discussion of this problem and obtain the Krasnoselskii theorem and Rabinowitz global bifurcation theorem respectively. All these results prove the existence of a steady state bifurcation when the parameter λ crosses an eigenvalue of the linearized problem with odd multiplicity, but the existence of bifurcation when the parameter crosses an eigenvalue with even multiplicity remains unknown. For some other results concerning eigenvalue bifurcation, see [2,5,6,8] and references therein.

In [9], Ma and Wang establish the existence of bifurcation when the parameter λ crosses an eigenvalue with even multiplicity under additional condition that the singularity be even-order nondegenerate. However, there is no precise criteria for the existence of bifurcation from eigenvalues with even multiplicity if the singularity be odd-order nondegenerate.

[^0]On the other hand, it is interesting to find that there exists bifurcation from double eigenvalue for many equations from science and engineering, of which the singularities are second-order fully degenerate and third-order nondegenerate.

In this paper, we consider the bifurcation of (1) from a double eigenvalue under assumption that the singularity be sec-ond-order fully degenerate and third-order nondegenerate. By the normalized Lyapunov-Schmidt reduction method [10], the precise criteria for the existence and nonexistence of bifurcation and the topological properties of regular bifurcated branches are obtained. At the end of this article, as an example to show how to apply our results in specific problems, we apply our results to the stationary equation of the Swift-Hohenberg equation.

2. Preliminaries

2.1. Normalized Lyapunov-Schmidt reduction

Let the eigenvalues (counting multiplicity) of L_{λ} be given by $\left\{\beta_{1}(\lambda), \beta_{2}(\lambda), \ldots\right\}$ with $\beta_{i}(\lambda) \in \mathbf{R}(i=1,2, \ldots)$ such that

$$
\begin{align*}
& \beta_{1}(\lambda)=\beta_{2}(\lambda)\left\{\begin{array}{l}
<0, \lambda<\lambda_{0}, \\
=0, \lambda=\lambda_{0}, \\
>0, \lambda>\lambda_{0},
\end{array}\right. \tag{2}\\
& \beta_{j}\left(\lambda_{0}\right) \neq 0, \quad \forall j \geqslant 3, \\
& \left.e_{1}(\lambda), e_{2}(\lambda), \ldots\right\}, \quad\left\{e_{1}^{*}(\lambda), e_{2}^{*}(\lambda), \ldots\right\} \text { be the } \\
& L_{\lambda_{0}} e_{k}(\lambda)=0, \quad L_{\lambda_{0}}^{*} e_{k}^{*}(\lambda)=0, \quad k=1,2, \tag{3}\\
& <e_{i}(\lambda), e_{j}^{*}(\lambda)>=\delta_{i j}, \quad \forall i, j .
\end{align*}
$$

and $\left\{e_{1}(\lambda), e_{2}(\lambda), \ldots\right\},\left\{e_{1}^{*}(\lambda), e_{2}^{*}(\lambda), \ldots\right\}$ be the eigenvectors of L_{λ} and L_{λ}^{*}, respectively, corresponding to $\beta_{i}(\lambda)$, such that

By the Spectral Theorem (see [10]), in the neighborhood of $\lambda=\lambda_{0}, X_{1}$ and X can be decomposed into

$$
\left\{\begin{array}{l}
X_{1}=E_{1}^{\lambda} \oplus E_{2}^{\lambda} \\
X=E_{1}^{\lambda} \oplus \bar{E}_{2}^{\lambda} \\
E_{1}^{\lambda}=\operatorname{span}\left\{e_{1}(\lambda), e_{2}(\lambda)\right\}, \\
E_{2}^{\lambda}=\left\{u \in X_{1} \mid<u, e_{i}^{*}(\lambda)>=0, \quad i=1,2\right\}
\end{array}\right.
$$

and L_{λ} can be decomposed into

$$
\left\{\begin{array}{l}
L_{\lambda}=\mathcal{L}_{\lambda}^{0} \oplus \mathcal{L}_{\lambda} \\
\mathcal{L}_{\lambda}^{0}: E_{1}^{\lambda} \rightarrow E_{1}^{\lambda} \\
\mathcal{L}_{\lambda}: E_{2}^{\lambda} \rightarrow \bar{E}_{2}^{\lambda}
\end{array}\right.
$$

Since $u \in X_{1}$, there exists $x \in E_{1}^{\lambda}, y \in E_{2}^{\lambda}$, such that

$$
\begin{aligned}
u & =x+y, \\
x & =x_{1} e_{1}+x_{2} e_{2}, \\
y & =\sum_{j=1}^{\infty} y_{j} e_{j},
\end{aligned}
$$

(1) can be rewritten as follows

$$
\begin{align*}
& \beta_{1} x_{1}+<G_{2}(x+y)+G_{3}(x+y), e_{1}>+o\left(\|x+y\|_{X_{1}}^{3}\right)=0, \tag{4}\\
& \beta_{2} x_{2}+<G_{2}(x+y)+G_{3}(x+y), e_{2}>+o\left(\|x+y\|_{X_{1}}^{3}\right)=0, \tag{5}\\
& \beta_{j} y_{j}+<G_{2}(x+y)+G_{3}(x+y), e_{j}>+o\left(\|x+y\|_{X_{1}}^{3}\right)=0, \quad j \geqslant 3 . \tag{6}
\end{align*}
$$

Definition 2.1 (Ma and Wang [10]). Assume (2) holds true. The steady state solution $u=0$ of (1) is called k th-order nondegenerate, if $x=\left(x_{1}, \ldots, x_{r}\right)=0$ is an isolated singular point of the following system of r-dimensional algebraic equations

$$
\sum_{j_{1} \ldots j_{k}=1}^{r} a_{j_{1} \ldots j_{k}}^{i} x_{j_{1}} \ldots x_{j_{k}}=0, \quad 1 \leqslant i \leqslant r
$$

where $a_{j_{1} \ldots j_{k}}^{i}=<G_{k}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right), e_{i}^{*}>_{x}, r$ is the geometric multiplicity of the eigenvalue $\beta_{1}\left(\lambda_{0}\right)$.

https://daneshyari.com/en/article/6421938

Download Persian Version:
https://daneshyari.com/article/6421938

Daneshyari.com

[^0]: * Corresponding author at: School of Computer Science, Civil Aviation Flight University of China, Guanghan, Sichuan 618307, PR China.

 E-mail addresses: zqcs007@163.com (Q. Zhang), goldendays123@gmail.com (Z. Pan).

