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a b s t r a c t

The linearized partial differential equation from the nonlinear partial differential equation
which was proposed by Rudin, Osher and Fatemi [L. I. Rudin, S. Osher and E. Fatemi, Non-
linear total variation based noise removal algorithms] for solving image decomposition was
introduced by Chambolle [A. Chambolle, An algorithm for total variation minimization and
applications] and R. Acar and C.R. Vogel [R. Acar and C. R. Vogel, Analysis of bounded variation
penalty methods for ill-posed problems]. In this paper, we propose a method for solving the
linearized partial differential equation and we show numerical results for denoising which
demonstrate a significant improvement over other previous works.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Assume that u0 ¼ uþ v , where u0 is a given image, u is the true signal and v is the noise or texture image, and all these
variables are defined on an open and bounded domain X � R2 . The goal of image denoising is to find the true solution u, and
u is obtained by solving a partial differential equation and satisfying the minimizer of the functional which is constructed for
obtaining the goal. Many methods for image denoising have been studied [33,31,35,34,3,36,14,15,9,10,1,19,26,24,4,5,8,12,7].

TV � L2 (ROF) is the well known edge preserving model proposed by Rudin, Osher and Fatemi [31]. This model decom-
poses an image u0 into a component u belonging to the space of functions of bounded variation notated by BV and a com-
ponent v in L2, where BV space is introduced by R. Acar and C.R. Vogel [1]. The ROF model is

inf
u

TðuÞf g ¼ inf
u

k
Z

X
jruj þ 1

2
ku� u0k2

� �
;

where k is a weight parameter, and ku� u0k is a fidelity term. If u 2 L1ðXÞ and
R

X jruj <1, then u 2 BVðXÞ. Assume that u is
the minimizer of ROF’s functional, TðuÞ. By using the Euler–Lagrange equation, the first derivation of T is

g0ðuÞ ¼ �ar � ru
jruj

� �
þ u� u0: ð1:1Þ

However, this is a nonlinear equation which has a highly nonlinear and non-differentiable term. It is not easy to solve such
nonlinear equations [21,17,16,27,28].
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A useful method to solve nonlinear equations is Chambolle’s method. In Chambolle’s work, the total variation, which is
the first term of TðuÞ, is changed into a dual form by using the Legendre-Fenchel transform as follows:

inf
n2K

Z
X

adivn� u0ð Þ2dx
� �

; ð1:2Þ

where the set of test functions is

K ¼ fdivn : n 2 C1
c ðX; R2Þ; jnðxÞj 6 1; 8x 2 Xg:

The problem (1.2) can be solved by the optimality condition and the semi-implicit gradient descent (fixed point) iteration
scheme

nnþ1 � nn

Mt
¼ r adivnn � u0ð Þ � r adivnn � u0ð Þj jnnþ1 ) nnþ1 ¼ nn þ Mtr adivnn � u0ð Þ

1þ Mt r adivnn � u0ð Þj j :

Thus, the numerical solution of the ROF model is obtained from the condition u ¼ u0 � an. The duality is a useful method for
linearizing the nonlinear differential term in TðuÞ. However, Chambolle’s method has to use division and division is concom-
itant with roundoff error, 1=3 – 0:333333. This prevents an exact numerical solution.

To overcome these problems, we propose a method for solving a linearized partial differential equation without using an
inverse matrix in image decompositions. Our method can be applied to solve several image decomposition models, for in-
stance, the TV � H�1 model (the OSV model).

In Section 2, we describe our idea, which involves using a sequence and analysis convergence rate, and show the limit of
our sequence satisfies the minimizer of the models in which we are interested. In Section 3, we demonstrate our results and
logic through numerical experiments.

2. Method

In this section, we describe our algorithm to decompose the true solution and the noise from a given image u0 2 L2ðXÞ.
Using a dual form of the total variation, we obtain a linear operator and construct a functional from this linear operator,
which is a quadric form. The limit of our constructed sequence minimizes the constructed functional which is equivalent
to the functional of the models of image decomposition. Particularly, we have the asymptotic rate of the convergence of
the sequence which depends on a search direction, zn, and a parameter, an, called the step-size as the conjugate gradient
method or the Richardson’s method [25,2,37]. The constructed search directions in our algorithm reduce errors. Thus, our
sequence successfully reduces error and its limit is the minimizer of the constructed functional in image decomposition.

2.1. Duality

We apply the duality to the ROF model or the OSV model, in order to obtain a linear operator, and take the set of test
functions

K ¼ fdivn : n 2 C1
c ðX; R2Þ; jnðxÞj 6 18x 2 Xg:

The ROF model can be set in the dual formulation

inf
u

sup
n2K

�
Z

X
uðxÞdivnðxÞdxþ 1

2k

Z
X
ðu� u0Þ2

� �
: ð2:1Þ

Here, for each n, a minimizer u of (2.1) has the form u ¼ u0 þ kdivn. Substituting this form for u back into (2.1) reformulates
the problem into

sup
n2K

R
X � k

2 ðdivnÞ2 � u0divn
� �n o

�inf
n2K

R
X

k
2 ðdivnÞ2 þ u0divn
� �n o ð2:2Þ

Finding n 2 K satisfying (2.2) is the same problem with finding n satisfying (2.3) because the last term of (2.3) is constant.

�inf
n2K

Z
X

k
2
ðdivnÞ2 þ u0divn

� �
þ u2

0

2k

� �
ð2:3Þ

Thus, the constrained optimization problem (2.2) is equivalent to the following:

inf
n2K

Z
X

divnþ u0

k

� �2
dx

� �
: ð2:4Þ

Chambolle shows that the functional (2.4) has a unique minimizer using a convergent sequence constructed by the semi-
implicit gradient descent (fixed point) iteration scheme. From the existence of the minimizer, we can obtain a problem as
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