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a b s t r a c t

In this paper we investigate H1-Galerkin mixed finite element approximation of one non-
linear integro-differential equation. This method possesses some advantages such as
approximating the unknown function and its gradient simultaneously as well as the finite
element spaces being free of LBB condition. A priori error estimates of the unknown func-
tion and its gradient are derived for both semi-discrete and fully discrete schemes. A
numerical example is presented to illustrate the theoretical findings.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are concerned with H1-Galerkin mixed finite element approximation of the following nonlinear integro-
differential model

@u
@t
¼ ð1þ rðtÞÞ @

2u
@x2 þ f ðx; tÞ; ðx; tÞ 2 I � ½0; T�; ð1:1Þ

with the initial and boundary conditions:

uð0; tÞ ¼ 0; uð1; tÞ ¼ 0; 0 6 t 6 T ð1:2Þ

and

uðx;0Þ ¼ u0ðxÞ; x 2 I; ð1:3Þ

where I ¼ ½0;1�; rðtÞ ¼
R t

0

R 1
0

@u
@x

� �2dxds. u0ðxÞ and f ðx; tÞ are given functions.
This kind of equations often arise in mathematical modeling of the process of a magnetic field penetrating into a sub-

stance, see, for example, [12,13], etc. In the past years many finite difference schemes were developed for this type of models.
One can refer to [14–16]. Recently Galerkin finite element approximation of model (1.1) was studied in [11], where only a
priori error estimate in H1 norm was derived.

Note that the coefficient in (1.1) depends on the derivative of u. The standard finite difference or finite element methods
solve u directly, and then differentiate it to determine the coefficient. Therefore, the resulting coefficient is often inaccurate,
which then reduces the accuracy of the numerical approximation for u.

In order to avoid this problem, in this paper we apply the H1 Galerkin mixed finite element method to solve model (1.1),
which can approximate the unknown function u and its derivative simultaneously. The H1-Galerkin mixed finite element
method was proposed in [1] for parabolic problems, which can be viewed as a non-symmetric version of least square
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method. Compared with standard mixed finite element method ([4–7]) the H1-Galerkin mixed finite element method does
not require the finite element spaces to satisfy the LBB stability condition, which makes the choice of finite element spaces
more flexible. It has been proved that the H1-Galerkin mixed finite element method has the same rate of convergence as
standard mixed finite element method. For more applications of this mixed formulation, one can refer to [1–3,8,9].

By introducing q ¼ ux we split model (1.1) into a system of two equations. Applying the H1-Galerkin mixed finite element
method to the resulting systems semi-discrete and fully discrete H1-Galerkin mixed finite element schemes are defined,
respectively. A priori error estimates for u and q are deduced for both semi-discrete scheme and fully discrete scheme. More-
over, a numerical example is given to illustrate the theoretical analysis.

Throughout the paper, we adopt the standard notation Wm;qðXÞ for Sobolev space on domain X with a norm k � km;q and a
semi-norm j � jm;q. For q ¼ 2, we denote HmðXÞ ¼Wm;2ðXÞ; k � km ¼ k � km;2 and for m ¼ 0, we denote k � k ¼ k � k0. Moreover, the
inner products in L2ðXÞ are indicated by ð�; �Þ. Let X be a Banach space and /ðtÞ : ½0; T�#X, we set

k/k2
L2ðXÞ ¼

Z T

0
k/ðsÞk2

Xds; k/kL1ðXÞ ¼ ess sup
06t6T

k/kX :

In addition, C denotes a generic constant independent of the spatial mesh parameter h and time discretization parameter
4t, and � denotes an arbitrarily small positive constant.

The remainder of this article is organized as follows: In Section 2 a semi-discrete H1-Galerkin mixed finite element
scheme is proposed and optimal a priori error estimates are obtained. In Section 3 a completely discrete scheme is briefly
described and optimal a priori error bounds are derived for this case. In Section 4 we present a numerical example to illus-
trate the theoretical results derived in Sections 2 and 3.

2. Semi-discrete H1-Galerkin mixed finite element formulation

In this section we propose a semi-discrete H1-Galerkin mixed finite element scheme for (1.1)–(1.3) and derive a priori
error estimates.

To define the H1-Galerkin mixed finite element procedure, we split (1.1) into a system of two equations by introducing
q ¼ ux:

q ¼ ux;

ut ¼ ð1þ erðtÞÞqx þ f ðx; tÞ;

�
ð2:1Þ

where erðtÞ ¼ R t
0

R 1
0 q2dxds. Let H1

0 ¼ fv 2 H1ðIÞjvð0Þ ¼ vð1Þ ¼ 0g. Multiplying the first equation in (2.1) by vx; v 2 H1
0, and

integrating on interval I leads to

ðux;vxÞ ¼ ðq; vxÞ; v 2 H1
0:

Multiplying the second equation in (2.1) by wx; w 2 H1, and integrating on interval I yields

ðut ;wxÞ � ðð1þ erðtÞÞqx;wxÞ ¼ ðf ;wxÞ; w 2 H1:

Note that utð0; tÞ ¼ utð1; tÞ ¼ 0. Integrating on interval I leads to

ðqt;wÞ þ ðð1þ erðtÞÞqx;wxÞ þ ðf ;wxÞ ¼ 0; w 2 H1:

Then the weak formulation of (2.1) is to find fu; qg : ½0; T�# H1
0 � H1 such that

ðux;vxÞ ¼ ðq; vxÞ; v 2 H1
0;

ðqt;wÞ þ ðð1þ erðtÞÞqx;wxÞ þ ðf ;wxÞ ¼ 0; w 2 H1:

(
ð2:2Þ

Let Vh; Wh be finite dimensional subspaces of H1
0 and H1, respectively, with the following approximation properties:

inf
vh2Vh

fkv � vhk0;p þ hkv � vhk1;pg 6 Chkþ1kvkkþ1;p; v 2 H1
0 \Wkþ1;pðIÞ

and

inf
wh2Wh

fkw�whk0;p þ hkw�whk1;pg 6 Chrþ1kwkrþ1;p; w 2Wrþ1;pðIÞ;

where 1 6 p 61; k; r are integers.
Then the semi-discrete H1-Galerkin mixed finite element approximation of (2.2) can be characterized as finding

fuh; qhg : ½0; T�#Vh �Wh such that

ðuhx;vhxÞ ¼ ðqh;vhxÞ; vh 2 Vh;

ðqht;whÞ þ ðð1þ erhðtÞÞqhx;whxÞ þ ðf ;whxÞ ¼ 0; wh 2Wh;

�
ð2:3Þ

with given qhð0Þ and erhðtÞ ¼
R t

0

R 1
0 q2

hdxds.
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