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a b s t r a c t

A sufficient condition of adaptive synchronization in dynamical networks with coupling
delays is gained, where the coupling configuration corresponds to a weighted graph. One
can reduce edges to original graph such that the network more quickly achieves synchro-
nization. Numerical simulations are given to illustrate the efficiency of theoretical results.
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1. Introduction

In general, complex networks consist of a large number of nodes and link among them, in which a node is a fundamental
cell with specific activity. So complex networks and graphs are closely contacted each other. The dynamics on complex net-
works is one on graphs, though the graphs may have different characteristics, e.g. classical random graph model [1], small-
world model [2,3], scale-free model [4], or others are related closely to natural structure.

Synchronization in complex dynamical networks is a universal phenomenon in various fields of science and society. There
are many works on the synchronization in complex dynamical networks [5–9]. Due to the finite speeds of transmission and
spreading as well as traffic congestion, a signal or influence traveling through a network often is associated with time delays.
Real-world complex systems, particularly in biological and physical systems, are time-delay systems. Thus in recent years, a
lot of efforts have been made to study the synchronization of dynamical coupled systems with delays [10–18].

Underlying these researches imply that the structural properties of a network must have some bearing on the synchro-
nization [19,20]. In addition, as pointed in [20], Lu and Cao introduced an adaptive synchronization method by enhancing the
coupling strength automatically under a simple updated law. However, their work is limited to tree-like networks (In fact, a
tree is a graph without cycles.), which cannot be applied to general networks, and delay effect on synchronization is also
unconsidered. In this paper, we will propose an adaptive synchronization method for general networks or graphs with cou-
pling time-delays. Based on the invariant principle of functional differential equations, the global synchronization will be
realized by designing adaptive controllers. Finally, the numerical simulations are given to illustrate our theoretical results.

2. Preliminaries

In this section, we now introduce some notations and preliminaries. Consider the delay complex dynamical network con-
sisting of N linearly and diffusively coupled identical nodes, with full diagonal coupling, and each node is an n-dimensional
dynamical oscillator which can be chaotic. The state equations of the network are

_xi ¼ f ðxiÞ þ
XN

j¼1

aijCxjðt � sÞ þ uiðtÞ; i ¼ 1;2; . . . ;N; ð1Þ
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where xi = (xi1,xi2, . . . ,xin)T 2 Rn is a state vector of node i, f(xi) = (f1(xi), f2(xi), . . . , fn(xi))T : Rn ? Rn is a given nonlinear vector val-
ued function describing the dynamics of the nodes, ui(t) represents adaptive controller to be designed, and the inner coupling
link matrix is a diagonal matrix C = diag{r1,r2, . . . ,rn} with ri > 0 and s > 0 is the coupling time-delay. The coupling configu-
ration matrix A = (aij)N�N is a zero row sums matrix with nonnegative off-diagonal entries, representing the topological struc-
ture of the networks.

There is a weighted graph corresponding to the coupling configuration matrix A, called the coupling configuration graph,
defined as a graph G on vertices 1,2, . . . ,N which contains an edge ij (i – j) with weight aij if and only if aij > 0. Giving an arbi-
trary orientation of the edges of G so that each edge has a head and a tail, and a labeling of edges as e1,e2, . . . ,eE, where E
denotes the number of edges of G. We obtain an edge-vertex incidence matrix of G, denoted as M :¼M(A) = (mij)E�N, which
is defined as mij ¼

ffiffiffiffiffi
aij
p

(reps. mij ¼ �
ffiffiffiffiffi
aij
p

) if the edge ei has the vertex j as a head (resp. a tail), and mij = 0 otherwise. The
Laplacian matrix of G is defined as L = MTM = D � B, where D is a diagonal matrix and the ith diagonal entry of which is ex-
actly the degree of the vertex i, i.e., di ¼

P
j2NðiÞaij, where N(i) is the set of neighbors of i in the graph G (or the vertices joining i

by edges), and B = (bij) is a weighted adjacency matrix of G such that bij = aij if ij is an edge of G and bij = 0 otherwise. One can
find that L = �A and is symmetric and positive semidefinite, so that its eigenvalues can be arranged as

0 ¼ k0 6 k1 6 k2 6 � � � 6 kN�1;

where k0 = 0 as L has zero row sums, and k1 > 0 if and only if G is connected, and is called the algebraic connectivity of G by
Fiedler [21] in the case of G is simple (i.e. all edges have weight 1). If G is connected, the corresponding eigenvector of the
eigenvalue 0 is an all ones vector (up to a scalar multiple), denoted by 1. One can refer to Chung [22] and Merris [23] for the
details of Laplacian matrices of graphs.

If we denote x ¼ xT
1; x

T
2; . . . ; xT

N

� �T
; FðxÞ ¼ f Tðx1Þ; f Tðx2Þ; . . . ; f TðxNÞ

� �T
; u ¼ uT

1;u
T
2; . . . ;uT

N

� �T and substitute �L for A, then Eq.
(1) is transformed as

_x ¼ FðxÞ � L� Cxðt � sÞ þ u: ð2Þ

In this paper, we adopt the l2-norm for vectors and the induced spectral norm for matrices. We always suppose that the
function F in Eq. (2) is Lipschitz continuous, or equivalently f in Eq. (1) is Lipschitz continuous, i.e., there exists a constant l > 0
such that for any x, y 2 Rn,

kf ðxÞ � f ðyÞk 6 l � kx� yk:

Lemma 1 [24]. For any vectors x, y 2 Rn and e > 0, inequality 2xT y 6 exT xþ 1
e yT y holds.

Lemma 2 [9]. Suppose that the coupling configuration graph corresponding to A = �L is connected. Then the dynamical network
(2) achieves synchronization if and only if limt?1 kMxk = 0, where M = M � In.

3. Main results

In this section, we will use state feedback control method and invariant principle to investigate adaptive synchronization
of complex network (2). To achieve synchronization, we design the adaptive controllers as:

u ¼ �kðtÞðIN � CÞx; ð3Þ

where k(t) is the time-varying gain. To guarantee negative feedback, the adaptive gain is designed as:

_kðtÞ ¼ bxTðL� CÞx; ð4Þ

where b is a positive constant to be determined.
The main result of this paper is stated as follows:

Theorem 1. Suppose that F is Lipschitz continuous and the coupling configuration graph corresponding to A = �L is connected.
Then the system (2) achieves synchronization under adaptive controllers (3) and (4).

Proof. Construct a Lyapunov functional as:

VðtÞ ¼ kMxðtÞk2 þ 1
b
ðkðtÞ � hÞ2 þ

Z t

t�s
kMxðsÞk2ds; ð5Þ

where h is a sufficiently large constant whose range is given later.
Noting that MTM = L � In, and substituting Eqs. (3) and (4) for u, we get the derivative of V(t) along the trajectories of Eq.

(2) as follows:
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