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ARTICLE INFO ABSTRACT
Keywords: Let ¢ be a holomorphic function on the open unit disk D and ¢ a holomorphic self-map of
PrOd{lCF operator D. Let Cy,M, and D denote the composition, multiplication and differentiation operator,
Multiplication operator respectively. We find an asymptotic expression for the essential norm of products of these
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operators on weighted Bergman spaces on the unit disk. This paper is a continuation of our
recent paper concerning the boundedness of these operators on weighted Bergman spaces.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let D be the open unit disk in the complex plane C, oD its boundary, H(D) the space of all functions holomorphic on D
and H*(D) = H* the space of all bounded holomorphic functions with the norm ||f||,, = sup,.p|f(2)|. Let dm(z) = Ldxdy be
the normalized area measure on D (i.e. m(D) = 1). For each a € (—1, 00), we set

dmy(z) = (0 + 1)(1 = |z]*)*dm(z), ze€ D.

Let £P(D) = £P, p >0, o > —1, be the weighted Lebesgue space containing all measurable functions f on D such that
I If@)Pdm,(z) < . By AL (D) = A% we denote the space £5(D) N H(D), which is called the weighted Bergman space. For
1 < p < o the space is Banach with the norm

e = (| Wz)\l’dma(z))””.

For the case o = 0, space A” will be denoted simply by A”. It is well known that f € A? if and only if f'(z)(1 — |z|*) € £P.
Moreover the following asymptotic relation holds

If1I% = LF(O)I" +/D F@P(1 - [21*) dmy(2). (1)

Let ¢ be a holomorphic self-map on D. The composition operator C,, induced by ¢ is defined by (C,f)(z) = (f o @)(2),
f € H(D). For y € H(D) the multiplication operator M, is defined on H(D) by M,f(z) = y/(2)f (2),f € H(D). The differentiation
operator denoted by D is defined by Df = f', f € H(D). Some results on products of concrete linear operators can be found, e.g.
in [4-11,16-18,21-49] (see also the references therein).
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The products of composition, multiplication and differentiation operators can be defined in the following six ways

(M, CyDf)(2) = ¥ (2)f (¢ (2));

(M,DC,f)(2) = ¥(2)¢' (2)f ((2));

(CoM,Df)(2) = y(@(2))f (¢(2)); 2
(DM, Cof)(2) = V' (2)f (9(2)) + ¥ (2) @' @)f (¢ (2));

(CoDM,f)(2) = ¥/ (9(2))f (9 (2)) + ¥ (@2)f (9(2));

(DC,M,f)(2) = /' (9(2)) 9 (2)f (9(2)) + ¥ (0(2) ¢ (2)f (9(2))

forz e D and f € H(D). From operator M,,C,,D for y(z) = 1, we get operator C,D, while for (z) = ¢'(z), we get operator DC,,
which have been studied, for example, in [4,6,9,11,14,17,28,30].
To treat operators in (2) in a unified manner, we introduced in [38] the following operator

Ty, 0,.0f(2) = 1 (Df (9(2)) + 2 (2Df (9(2), feH(D), 3)

where /;,¥, € H(D) and ¢ is a holomorphic self-map of D. It is clear that all products of composition, multiplication and
differentiation operators in (2) can be obtained from the operator T,, 4, , by fixing ¥, and y,. Indeed, we have M,C,D =
Toy.o; MyDCy = Toyg p; CoMyD = Toyopp; DMyCop =Ty g5 CoDMy =Tyogyop.p; DCoMy = Tiyopipr, wop)po-

Let 0 < B < co. Recall that a positive Borel measure p on D is called a p-Carleson measure if

HS)
1’

4l =

where S(I) = {z: 1 —|I| < |z] < 1,z/|z| € I} is a Carleson box based on the arcI ¢ 9D of length |I| > 0. Measure  is a vanishing
p-Carleson measure if

m HEW)
=0 |1

This paper is continuation of its part one (see [38]), where we characterized the boundedness of operator (3) on weighted
Bergman spaces by proving the following result.

Theorem 1. Let 1 < p < oo,a € (—1,00),y,¥, € H(D) and ¢ be a holomorphic self-map of D.

(1) If y, € H™, then the following statements are equivalent:
(i) Ty, u,.0 is bounded on AL,
(ii) The pull-back measure [, ., = Vy,ap© @' Of vy, »p induced by ¢ is an (o + 2 + p)-Carleson measure.

Q ‘Z‘Z o+2

(iii) sup,ep [ Whﬁ( w)Pdm,(w) < o
(2) If ¥, satisfies the condition

e
M := 00, 4
1P @

then the following statements are equivalent:

(i) Ty, u,.0 is bounded on AL,

(ii) The pull-back measure p, = Vy,ap © @ Of Vy, 4p induced by ¢ is an (o + 2)-Carleson measure.

PP
(i) SUP,es [y 7 vy (w) Pedmi(w) < oc.

2p(w)P*
Here we estimate the essential norm of the operator, and apply these results to concrete operators listed in (2). Recall that
the essential norm ||T||, of a bounded linear operator T on a Banach space X is given by

IT|l, = inf{||T +K]| : K is compact on X},

that is, its distance in the operator norm from the space of compact operators on X. The essential norm provides a measure of
non-compactness of T. Clearly, T is compact if and only if ||T||, = 0. For some results in the topic see, e.g. [1-3,15,24,25,31,42],
and the related references therein.

Throughout this paper, constants are denoted by C, they are positive and not necessarily the same at each occurrence. The
notation A =< B means that there is a positive constant C such that B/C < A < CB.



Download English Version:

https://daneshyari.com/en/article/6422040

Download Persian Version:

https://daneshyari.com/article/6422040

Daneshyari.com


https://daneshyari.com/en/article/6422040
https://daneshyari.com/article/6422040
https://daneshyari.com

