
An efficient numerical method for preconditioned saddle point problems

Dongping Li a, Jingyu Zhao b, Guofeng Zhang c,⇑
a School of Mathematics, Changchun Normal University, Changchun 130032, PR China
b ZTE Corporation, Shenzhen 518120, PR China
c School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China

a r t i c l e i n f o

Keywords:
Saddle point problems
Matrix splitting
Iteration method

a b s t r a c t

In this paper, we consider the solution of linear systems of saddle point type by a precon-
ditioned numerical method. We first transform the original linear system into two sub-sys-
tems with small size by a preconditioning strategy, then employ the conjugate gradient
(CG) method to solve the linear system with a SPD coefficient matrix, and a splitting iter-
ation method to solve the other sub-system, respectively. Numerical experiments show
that the new method can achieve faster convergence than several effective preconditioners
published in the recent literature in terms of total runtime and iteration steps.
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1. Introduction

We consider the solution of large sparse saddle point problems with the structure

Ax �
A B

BT O

� �
y

z

� �
¼

f

g

� �
� b; ð1:1Þ

where A 2 Rm�m is symmetric positive definite, B 2 Rm�n has full column rank, m > n; f 2 Rm, and g 2 Rn. These assumptions
guarantee the existence and uniqueness of the solution of the linear system (1.1); see [1]. Systems of the form (1.1) arise in a
variety of science and engineering applications, including constrained optimization, mixed finite element formulations of
partial differential equations, circuit analysis, and so on; see [2,3]. Due to indefiniteness of the coefficient matrix and often
poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has
been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for this type of
systems; see [4–9] and the references therein. The aim of this paper is to present a new selection of solution methods for
the saddle point problem (1.1), with an emphasis on iteration methods for large and sparse problems. This approach pro-
posed avoids to compute the inverse of matrices by some modification.

The paper is organized as follows. In Section 2, the new iteration algorithm is presented, and some of its convergence
properties are studied. In Section 3, the results of numerical experiments with our algorithm are reported. Finally, we offer
some concluding remarks in Section 4.

Throughout the paper, we use kmin and kmax to denote the smallest and largest eigenvalues of the matrix A, and lmin the
smallest singular value of the matrix B.
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2. Iteration algorithm and analysis of convergence

Let

Pa ¼
Im �BðBT BÞ�1

O In

" #
Im O

BT �aBT B

� �
;

where a is a positive constant.
Preconditioning for the system (1.1) from the left with Pa yields a system of the form

PaA
y

z

� �
¼ Pa

f

g

� �
: ð2:1Þ

An explicit calculation reveals that the system (2.1) can be rewritten as

A3 O

B3 B2

� �
y

z

� �
¼

b2

q2

� �
; ð2:2Þ

where A3 ¼ Aþ aBBT � BðBT BÞ�1BT A;B2 ¼ BT B;B3 ¼ BT A� aBT BBT ; b2 ¼ f � BðBT BÞ�1BT f þ aBg; q2 ¼ BT f � aBT Bg. Obviously, A3

is nonsingular.
We can get the solution of the system (2.2) by solving the coupled linear systems of the form

A3y ¼ b2;

B3yþ B2z ¼ q2;

�
ð2:3Þ

which can be solved by first computing y from

A3y ¼ b2 ð2:4Þ

and then computing z from

B2z ¼ q2 � B3y: ð2:5Þ

The system (2.5) is SPD, and any solver for SPD systems can be applied. This could be a Cholesky factorization, or a precon-
ditioned conjugate gradient (PCG) method, or some specialized solvers [9].

For (2.4), generally, the coefficient matrix A3 is large and dense, so direct computations are very costly and impractical in
actual implementations. To overcome this disadvantage, we can solve the system iteratively by splitting technology.

For matrix A3, we make the following splitting

A3 ¼ Ma � N;

where Ma ¼ Aþ aBBT is a Hermitian positive matrix, and N ¼ BðBT BÞ�1BT A.
Then we consider the following parameterized iteration scheme for solving the system (2.4):

Maxkþ1 ¼ Nxk þ b2: ð2:6Þ

Let Ga ¼ M�1
a N; c ¼ M�1

a b2. The iteration sequence fxkg generated by (2.6) converges to the solution x ¼ A�1
3 b2 for arbitrary

initial guesses x0 and right-hand sides b2 if and only if qðGaÞ < 1, where qðGaÞ denotes the spectral radius of Ga.

Theorem 2.1. Let A 2 Rm�m be SPD, and B 2 Rm�n be of full column rank. Then, the iteration (2.6) is convergent when a > a�,
where a� ¼ k2

max
lminkmin

. Furthermore, we have lima!1qðGaÞ ¼ 0.

Proof. Let k 2 C be an eigenvalue of Ga, x be a corresponding eigenvector with kxk2 ¼ 1, and d be a positive constant. Evi-
dently, k – 0.

Note that Gax ¼ kx, it follows that kMax ¼ Nx, i.e.

kðAþ aBBTÞx ¼ BðBT BÞ�1BT Ax:

Then

kx�ðAþ aBBTÞx ¼ x�BðBT BÞ�1BT Ax:

Therefore

jkj ¼ jx
�BðBT BÞ�1BT Axj
jx�ðAþ aBBTÞxj

¼ jx
�BðBT BÞ�1BT Axj

x�Axþ ax�BBT x
: ð2:7Þ

If BT x ¼ 0, then k = 0, a contradiction. Hence, it must hold BT x – 0.
By (2.7), we can easily conclude that jkj ! 0 as a!1, which implies qðGaÞ ! 0.
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