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a b s t r a c t

The simulated annealing (SA) algorithm is a well-established optimization technique
which has found applications in many research areas. However, the SA algorithm is limited
in its application due to the high computational cost and the difficulties in determining the
annealing schedule. This paper demonstrates that the temperature parallel simulated
annealing (TPSA) algorithm, a parallel implementation of the SA algorithm, shows great
promise to overcome these limitations when applied to continuous functions. The TPSA
algorithm greatly reduces the computational time due to its parallel nature, and avoids
the determination of the annealing schedule by fixing the temperatures during the anneal-
ing process. The main contributions of this paper are threefold. First, this paper explains a
simple and effective way to determine the temperatures by applying the concept of critical
temperature (TC). Second, this paper presents systematic tests of the TPSA algorithm on
various continuous functions, demonstrating comparable performance as well-established
sequential SA algorithms. Third, this paper demonstrates the application of the TPSA
algorithm on a difficult practical inverse problem, namely the hyperspectral tomography
problem. The results and conclusions presented in this work provide are expected to be
useful for the further development and expanded applications of the TPSA algorithm.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The simulated annealing (SA) algorithm was first introduced in 1983 for solving combinatorial optimization problems [1].
Since then, it has been extensively studied, with successful demonstrations of its use for both discrete [2,3] and continuous
optimization problems [4–10]. These past research efforts have shown several critical advantages of the SA algorithm over
other optimization techniques. For example, it can optimize complicated problems with a large number of variables and
numerous confusing local minima. In addition, the SA algorithm is insensitive to the initial guess, which is especially impor-
tant when no a priori information about the solutions is available.

On the other hand, the disadvantages of the SA algorithm are also well-recognized. One of the primary disadvantages of
the SA algorithm is its high computational cost [6,10]. Many research efforts that have focused on developing variants of the
SA algorithm to reduce the computational cost [11–13] can be divided into two categories. Efforts in the first category
attempt to optimize the annealing schedule [2,14–17]. However, the optimal annealing schedule is usually problem-depen-
dent [14,15], therefore limiting the applicability of the results from these efforts. The second category involves the parallel-
ization of the SA algorithm [12,18–21]. However, most of these parallelization schemes do not guarantee convergence. Some
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of the parallelization schemes that do guarantee convergence, (e.g., the speculatively parallelized SA (SPSA) algorithm
[20,21]) can only achieve a maximum speedup efficiency of log2(Nproc), where Nproc is the number of processes used to imple-
ment the parallel algorithm.

The above considerations motivate the study of the temperature parallel simulated annealing (TPSA) algorithm which
combines the well-established parallel tempering (or replica exchange) method [22,23] and the SA algorithm [24]. The TPSA
algorithm is another parallel SA algorithm that has theoretically been proven to be convergent [12,19,25], while being able to
achieve linear speedup. In addition, optimization processes occur at constant temperatures in the TPSA algorithm; therefore,
the TPSA algorithm does not require an annealing schedule. Once the starting and ending temperatures (T0 and TN) are deter-
mined, the remaining temperatures can easily be obtained. However, the TPSA algorithm has only been studied primarily on
discrete functions in previous efforts [2,19,20,24,26]. Therefore, it is the goal of this current work to conduct a systematic
study of the TPSA algorithm on continuous functions. This paper first explains a simple and effective way to determine T0

and TN by applying the concept of critical temperature (TC) which has been successfully demonstrated on various compli-
cated functions in [5]. Then systematic tests of the TPSA algorithm on various continuous functions are reported, demon-
strating comparable performance as well-established sequential SA algorithms.

The above studies are directly motivated by a practical application, in which a so-called hyperspectral tomography prob-
lem is desired to be solved efficiently to obtain in situ measurements of the temperature and concentration of chemical spe-
cies [8,9]. Therefore, the application of the TPSA algorithm developed in this paper was also applied to solve the
hyperspectral problem, illustrating its usefulness and potential for practical applications.

The remainder of this paper is organized as follows. Section 2 provides a detailed introduction to the TPSA algorithm. Sec-
tion 3 discusses the determination of the T0 and TN using the concept of TC, while Sections 4 and 5 evaluate the performance
of the TPSA algorithm in terms of accuracy and computational time. Section 6 discusses the impact of other parameters
important to the TPSA algorithm, including the relationship between the speedup efficiency and the number of processes
(Nproc), and the effects of the exchange frequency (EF). Section 7 describes the application of the TPSA algorithm to a practical
problem, where the TPSA algorithm was applied to perform tomographic inversion of hyperspectral measurements. Finally,
Section 8 summarizes the paper.

2. Temperature parallel simulated annealing

The TPSA algorithm, a parallel implementation of the SA algorithm, offers two advantages over sequential SA algorithms:
(1) the determination of the annealing schedule can be avoided by fixing the temperatures as constant throughout the opti-
mization process, and (2) a reduction in computational time can be achieved. Note that under the context of the SA algo-
rithm, the term ‘‘temperature’’ represents a parameter used in the algorithm, to the differentiated from the physical
temperature to be measured in the hyperspectral tomography technique later in Section 7 of the paper.

The mechanism of the TPSA algorithm has been explained elsewhere under the context of combinatorial optimization
[2,19], and is illustrated in Fig. 1 and briefly summarized here. First, N + 1 temperatures (T0–TN) are generated and dispatched
to N + 1 processes. Then, each process performs an optimization procedure using a sequential SA algorithm with the assigned
temperature fixed as constant. Here, a well-established sequential SA algorithm described in [6] is used. After a pre-set num-
ber of iterations on each process, the processes with adjacent temperatures (labeled as T and T0 in Fig. 1) exchange their opti-
mal solutions as shown in Fig. 1. The exchange occurs at a probability p as defined in Fig. 1. If the solution at the higher
temperature exhibits a smaller function value than that of the lower temperature, the solutions are always exchanged.
Otherwise, the solutions will be exchanged with a probability less than 1. The specific value of the probability is determined
by the temperature difference between T and T0 (labeled as DT) and the difference in the functional values (labeled as Df).

Fig. 1. Illustration of the TPSA algorithm.
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