# On the logarithmic coefficients of Bazilevič functions 

Qin Deng<br>School of Science, Hangzhou Dianzi University, Hangzhou 310018, PR China

## ARTICLE INFO

## Keywords:

Univalent functions
Bazilevič functions
Logarithmic coefficients


#### Abstract

The objective of the present paper is to study the logarithmic coefficients of Bazilevič functions. We obtain the inequality $\left|\gamma_{n}\right| \leqslant A n^{-1} \log n(A$ is an absolute constant) which holds for Bazilevič functions.


© 2010 Elsevier Inc. All rights reserved.

## 1. Introduction

Throughout the paper, $\mathscr{A}$ denotes the class of analytic functions $f(z)$ in the unit disk $U=\{z \in C:|z|<1\}$ normalized so that $f(0)=0$ and $f(0)=1$.

Let $\alpha$ and $\beta$ be real numbers with $\alpha>0$. A function $f(z) \in \mathscr{A}$ is called Bazilevič functions of type $(\alpha, \beta)$ if

$$
\begin{equation*}
f(z)=\left[(\alpha+i \beta) \int_{0}^{z} p(t)(g(t))^{\alpha} t^{i \beta-1} d t\right]^{\frac{1}{\alpha+i \beta}} \tag{1.1}
\end{equation*}
$$

for a starlike (univalent) function $g(z)$ in $U$ and an analytic function $p(z)$ with $p(0)=1$ satisfying $\operatorname{Re}\{p(z)\}>0$ in $U$. We denote by $B(\alpha, \beta)$ the class of Bazilevič functions of type $(\alpha, \beta)$. For the sake of brevity we shall simply denote by $B(\alpha)$ instead of $B(\alpha, 0)$ and we shall call a function in $B(\alpha)$ a Bazilevič functions of type $\alpha$.

Let $S, \mathscr{K}, S^{*}$ and $S_{c}$ denote the subclasses of $\mathscr{A}$ of functions univalent, convex, starlike and close-to-convex, respectively. We also denote by $\mathscr{P}$ the class of analytic functions $p(z)$ with $p(0)=1$ and $\operatorname{Re}\{p(z)\}>0$ in $U$. Note that $\mathscr{P}$ is known as the Carathéodory class.

Let $\alpha>0$ and $\beta \in R$. In view of (1.1), for $f(z) \in \mathscr{A}$, we readily see that $f(z) \in B(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{g(z)}\right)^{\alpha}\left(\frac{f(z)}{z}\right)^{i \beta} \in \mathscr{P} \tag{1.2}
\end{equation*}
$$

for some $g(z) \in S^{*}$ (see [1]).
Bazilevič [2] shows that $B(\alpha, \beta) \subset S$ for $\alpha>0, \beta \in R$. Later, Sheil-Small [3] extends it to the case $\alpha \geqslant 0$ and gives a geometric characterization for $B(\alpha, \beta)$. So far, Bazilevič functions form the largest known subclass of $S$ which has concrete expressions.

It is well known that the inclusion relations

$$
\mathscr{K} \subset S^{*} \subset S_{c} \subset B(\alpha) \subset B(\alpha, \beta) \subset S
$$

are valid. See $[2,4,5]$ for further information.
Associated with each $f(z)$ in $S$ is a well defined logarithmic function

$$
\begin{equation*}
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n}, \quad z \in U \tag{1.3}
\end{equation*}
$$

The numbers $\gamma_{n}$ are called the logarithmic coefficients of $f(z)$. Thus the Koebe function $k(z)=z(1-z)^{-2}$ has logarithmic coefficients $\gamma_{n}=\frac{1}{n}$. It is clear that $\left|\gamma_{1}\right| \leqslant 1$ for each $f(z) \in S$. The problem of the best upper bounds for $\left|\gamma_{n}\right|$ is still open. In fact even

[^0]the proper order of magnitude is still not known. It is known, however, for the starlike functions that the best bound is $\left|\gamma_{n}\right| \leqslant \frac{1}{n}$ and that this is not true in general [4, P.151]; [6, P.898]; [7, P.140] and [8].

In the paper [9] it is pointed out that the inequality $\left|\gamma_{n}\right| \leqslant A n^{-1} \log n$ ( $A$ is an absolute constant) which holds for circularly symmetric functions.

In a recent paper [10], it is presented that the inequality $\left|\gamma_{n}\right| \leqslant \frac{1}{n}$ holds also for close-to-convex functions. However, it is pointed out in [11] that there are some errors in the proof and, hence, the result is not substantiated. It is proved in [12] that there exists a function $f(z) \in S_{c}$ such that $\left|\gamma_{n}\right|>\frac{1}{n}$. Furthermore, it is proved in [13] that the inequality $\left|\gamma_{n}\right| \leqslant A n^{-1} \log n$ holds for close-to-convex functions, where $A$ is an absolute constant.

In the present paper, we study the logarithmic coefficients of Bazilevič functions $B(\alpha, \beta)$. Also, we obtain the inequality $\left|\gamma_{n}\right| \leqslant A n^{-1} \log n$ ( $A$ is an absolute constant) which holds for Bazilevič functions $B(\alpha, \beta)$.

## 2. Main results

First, we give the following lemmas:
Lemma 1 [13]. Let $f(z) \in S$. Then, for $z=r e^{i \theta}, \frac{1}{2} \leqslant r<1$,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2} d \theta \leqslant 1+\frac{4}{1-r} \log \frac{1}{1-\sqrt{r}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\frac{1}{2}}^{r} \int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2} d \theta d r \leqslant 1+2 \log \frac{1}{1-r} \tag{2.2}
\end{equation*}
$$

Lemma 2. Let $f(z) \in S, \tau \in C$. Then, $z=r e^{i \theta}, 0<r<1$,

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left(\arg \left(\frac{f(z)}{z}\right)^{\tau}\right)=\tau \frac{\partial}{\partial \theta}\left(\arg \frac{f(z)}{z}\right) \tag{2.3}
\end{equation*}
$$

Proof. It is clear that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1}{i} \frac{\partial}{\partial \theta}\left(\log \frac{f(z)}{z}\right)+1 \tag{2.4}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}=\operatorname{Im}\left\{\frac{\partial}{\partial \theta}\left(\log \frac{f(z)}{z}\right)\right\}+1=\frac{\partial}{\partial \theta}\left(\arg \frac{f(z)}{z}\right)+1 \tag{2.5}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1}{i \tau} \frac{\partial}{\partial \theta}\left(\log \left(\frac{f(z)}{z}\right)^{\tau}\right)+1 \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}=\frac{1}{\tau} \operatorname{Im}\left\{\frac{\partial}{\partial \theta}\left(\log \left(\frac{f(z)}{z}\right)^{\tau}\right)\right\}+1=\frac{1}{\tau} \frac{\partial}{\partial \theta}\left(\arg \left(\frac{f(z)}{z}\right)^{\tau}\right)+1 \tag{2.7}
\end{equation*}
$$

From (2.5) and (2.7) we obtain

$$
\frac{\partial}{\partial \theta}\left(\arg \left(\frac{f(z)}{z}\right)^{\tau}\right)=\tau \frac{\partial}{\partial \theta}\left(\arg \frac{f(z)}{z}\right)
$$

Theorem 1. Let $f(z) \in B(\alpha, \beta)$. Then, for $n \geqslant 2$,

$$
\begin{equation*}
\left|\gamma_{n}\right| \leqslant A n^{-1} \log n \tag{2.8}
\end{equation*}
$$

where $A$ is an absolute constant, and the exponent -1 is the best possible.
Proof. If $f(z) \in B(\alpha, \beta)$, then there exist $g(z) \in S^{*}$ such that $\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{g(z)}\right)^{\alpha}\left(\frac{f(z)}{z}\right)^{i \beta}>0, \alpha>0, \beta \in R$. Write $p(z)=\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{g(z)}\right)^{\alpha}\left(\frac{f(z)}{z}\right)^{i \beta}$, then $\operatorname{Rep}(z)>0$. It is clear that

$$
p(z)=2 \operatorname{Rep}(z)-\overline{p(z)}
$$

# https://daneshyari.com/en/article/6422283 

Download Persian Version:

## https://daneshyari.com/article/6422283

## Daneshyari.com


[^0]:    E-mail address: Dqsx123@126.com

