Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On the logarithmic coefficients of Bazilevič functions

Qin Deng

School of Science, Hangzhou Dianzi University, Hangzhou 310018, PR China

ARTICLE INFO

ABSTRACT

Keywords: Univalent functions Bazilevič functions Logarithmic coefficients The objective of the present paper is to study the logarithmic coefficients of Bazilevič functions. We obtain the inequality $|\gamma_n| \leq An^{-1}\log n$ (A is an absolute constant) which holds for Bazilevič functions.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, \mathscr{A} denotes the class of analytic functions f(z) in the unit disk $U = \{z \in C : |z| < 1\}$ normalized so that f(0) = 0 and f(0) = 1.

Let α and β be real numbers with $\alpha > 0$. A function $f(z) \in \mathscr{A}$ is called Bazilevič functions of type (α, β) if

$$f(z) = \left[(\alpha + i\beta) \int_0^z p(t)(g(t))^{\alpha} t^{i\beta - 1} dt \right]^{\frac{1}{\alpha + i\beta}},\tag{1.1}$$

for a starlike (univalent) function g(z) in U and an analytic function p(z) with p(0) = 1 satisfying $Re\{p(z)\} > 0$ in U. We denote by $B(\alpha, \beta)$ the class of Bazilevič functions of type (α, β) . For the sake of brevity we shall simply denote by $B(\alpha)$ instead of $B(\alpha, 0)$ and we shall call a function in $B(\alpha)$ a Bazilevič functions of type α .

Let S, \mathcal{H}, S^* and S_c denote the subclasses of \mathcal{A} of functions univalent, convex, starlike and close-to-convex, respectively. We also denote by \mathcal{P} the class of analytic functions p(z) with p(0) = 1 and $Re\{p(z)\} > 0$ in U. Note that \mathcal{P} is known as the Carathéodory class.

Let $\alpha > 0$ and $\beta \in R$. In view of (1.1), for $f(z) \in \mathcal{A}$, we readily see that $f(z) \in B(\alpha, \beta)$ if and only if

$$\frac{zf'(z)}{f(z)}\left(\frac{f(z)}{g(z)}\right)^{\alpha}\left(\frac{f(z)}{z}\right)^{i\beta} \in \mathscr{P},$$
(1.2)

for some $g(z) \in S^*$ (see [1]).

Bazilevič [2] shows that $B(\alpha, \beta) \subset S$ for $\alpha > 0$, $\beta \in R$. Later, Sheil-Small [3] extends it to the case $\alpha \ge 0$ and gives a geometric characterization for $B(\alpha, \beta)$. So far, Bazilevič functions form the largest known subclass of *S* which has concrete expressions. It is well known that the inclusion relations

 $\mathscr{K} \subset S^* \subset S_c \subset B(\alpha) \subset B(\alpha, \beta) \subset S$

are valid. See [2,4,5] for further information.

Associated with each f(z) in S is a well defined logarithmic function

$$\log \frac{f(z)}{z} = 2 \sum_{n=1}^{\infty} \gamma_n z^n, \quad z \in U.$$
(1.3)

The numbers γ_n are called the logarithmic coefficients of f(z). Thus the Koebe function $k(z) = z(1-z)^{-2}$ has logarithmic coefficients $\gamma_n = \frac{1}{n}$. It is clear that $|\gamma_1| \leq 1$ for each $f(z) \in S$. The problem of the best upper bounds for $|\gamma_n|$ is still open. In fact even

E-mail address: Dqsx123@126.com

^{0096-3003/\$ -} see front matter \circledcirc 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2010.12.075

the proper order of magnitude is still not known. It is known, however, for the starlike functions that the best bound is $|\gamma_n| \leq \frac{1}{n}$ and that this is not true in general [4, P.151]; [6, P.898]; [7, P.140] and [8].

In the paper [9] it is pointed out that the inequality $|\gamma_n| \leq An^{-1}\log n$ (A is an absolute constant) which holds for circularly symmetric functions.

In a recent paper [10], it is presented that the inequality $|\gamma_n| \leq \frac{1}{n}$ holds also for close-to-convex functions. However, it is pointed out in [11] that there are some errors in the proof and, hence, the result is not substantiated. It is proved in [12] that there exists a function $f(z) \in S_c$ such that $|\gamma_n| > \frac{1}{n}$. Furthermore, it is proved in [13] that the inequality $|\gamma_n| \leq An^{-1}\log n$ holds for close-to-convex functions, where A is an absolute constant.

In the present paper, we study the logarithmic coefficients of Bazilevič functions $B(\alpha, \beta)$. Also, we obtain the inequality $|\gamma_n| \leq An^{-1}\log n$ (A is an absolute constant) which holds for Bazilevič functions $B(\alpha, \beta)$.

2. Main results

First, we give the following lemmas:

Lemma 1 [13]. *Let* $f(z) \in S$. *Then, for* $z = re^{i\theta}$, $\frac{1}{2} \leq r < 1$,

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{zf'(z)}{f(z)} \right|^{2} d\theta \leqslant 1 + \frac{4}{1-r} \log \frac{1}{1-\sqrt{r}},\tag{2.1}$$

and

$$\frac{1}{2\pi} \int_{\frac{1}{2}}^{r} \int_{0}^{2\pi} \left| \frac{zf'(z)}{f(z)} \right|^{2} d\theta dr \leqslant 1 + 2\log \frac{1}{1-r}.$$
(2.2)

Lemma 2. Let $f(z) \in S$. $\tau \in C$. Then, $z = re^{i\theta}$. 0 < r < 1.

$$\frac{\partial}{\partial \theta} \left(\arg \left(\frac{f(z)}{z} \right)^{\tau} \right) = \tau \frac{\partial}{\partial \theta} \left(\arg \frac{f(z)}{z} \right).$$
(2.3)

Proof. It is clear that

$$\frac{zf'(z)}{f(z)} = \frac{1}{i} \frac{\partial}{\partial \theta} \left(\log \frac{f(z)}{z} \right) + 1.$$
(2.4)

It follows that

$$\operatorname{Re}\frac{zf'(z)}{f(z)} = \operatorname{Im}\left\{\frac{\partial}{\partial\theta}\left(\log\frac{f(z)}{z}\right)\right\} + 1 = \frac{\partial}{\partial\theta}\left(\operatorname{arg}\frac{f(z)}{z}\right) + 1.$$
(2.5)

Since

$$\frac{zf'(z)}{f(z)} = \frac{1}{i\tau} \frac{\partial}{\partial \theta} \left(\log \left(\frac{f(z)}{z} \right)^{\tau} \right) + 1,$$
(2.6)

then

$$Re\frac{zf'(z)}{f(z)} = \frac{1}{\tau} Im\left\{\frac{\partial}{\partial\theta} \left(\log\left(\frac{f(z)}{z}\right)^{\tau}\right)\right\} + 1 = \frac{1}{\tau} \frac{\partial}{\partial\theta} \left(\arg\left(\frac{f(z)}{z}\right)^{\tau}\right) + 1.$$
(2.7)

From (2.5) and (2.7) we obtain

$$\frac{\partial}{\partial \theta} \left(\arg \left(\frac{f(z)}{z} \right)^{\tau} \right) = \tau \frac{\partial}{\partial \theta} \left(\arg \frac{f(z)}{z} \right).$$

Theorem 1. Let $f(z) \in B(\alpha, \beta)$. Then, for $n \ge 2$,

$$|\gamma_n| \leqslant A n^{-1} \log n, \tag{2.8}$$

where A is an absolute constant, and the exponent -1 is the best possible.

Proof. If $f(z) \in B(\alpha, \beta)$, then there exist $g(z) \in S^*$ such that $Re \frac{zf'(z)}{f(z)} \left(\frac{f(z)}{g(z)}\right)^{\alpha} \left(\frac{f(z)}{z}\right)^{i\beta} > 0, \alpha > 0, \beta \in R$. Write $p(z) = \frac{zf'(z)}{f(z)} \left(\frac{f(z)}{g(z)}\right)^{\alpha} \left(\frac{f(z)}{z}\right)^{i\beta}$, then Ren(z) > 0. It is clear that then Rep(z) > 0. It is clear that

$$p(z) = 2Rep(z) - \overline{p(z)}.$$

()

Download English Version:

https://daneshyari.com/en/article/6422283

Download Persian Version:

https://daneshyari.com/article/6422283

Daneshyari.com