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a b s t r a c t

For finite difference matrices that are monotone, a discretization error estimate in
maximum norm follows from the truncation errors of the discretization. It enables also
discretization error estimates for derivatives of the solution. These results are extended to
convergent operator splittings of the difference matrix where the major, preconditioning
part is monotone but the whole operator is not necessarily monotone.
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1. Introduction

Finite difference methods for elliptic problems [1–3] are most suitable for regular grids. They can often be formulated
so that the discrete operator is a monotone matrix. This enables a simple estimate of the discretization error in maximum
norm with a best constant factor in the upper bound. In addition, one can approximate first and higher order derivatives of
the solution with the same order of convergence, if the solution is sufficiently regular. The estimates are local, and therefore
hold even for problems with discontinuous coefficients on macroelements, if the solution is regular in the interior of each
element. One can consider here both rectangular and hexagonal meshes. The difference operator is particularly simple for
hexagonal meshes. High order difference approximations can be constructed either with use of approximations on locally
extended meshes of the higher order derivative terms in the truncation error, or with use of extrapolation for regularly
refined meshes.

In the case when the matrix is not monotone, one can split it in a monotone and remainder term. If this, with proper
scaling of the matrices, leads to a convergent splitting, one can still estimate the maximum norm of the error, but with
a factor that becomes larger when the splitting leads to a larger convergence factor. This approach can be illustrated for
the Helmholtz equation. Other possible applications might arise for the system of elasticity equation, using a splitting into
the divergence and grad div terms, or proper splittings can be based on equivalent operator pairs, see [4] for examples of
equivalent operators.
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In this paper, first discretization error estimates for monotone matrices are described. In Section 3 some high order
difference approximations are derived. Estimates using convergent splittings are presented in Section 4, which includes the
case of the Helmholtz equation, illustrated by a numerical test.

2. Preliminaries: discretization error estimates for monotone matrices

Recall that a discretization matrix Lh on a difference mesh Ωh, where h denotes the mesh size, is calledmonotone if

Lhu ≥ 0 implies u ≥ 0. (2.1)

It is readily seen that monotone matrices are nonsingular, because if Lhu ≤ 0 then Lh(−u) ≥ 0 so −u ≥ 0, i.e. u ≤ 0.
Hence, if Lhu = 0 then both u ≥ 0 and u ≤ 0, that is u = 0. Further, a nonsingular discretized operator (matrix) Lh = A
is monotone if and only if A−1

≥ 0, i.e. the entries of its inverse are nonnegative. The sufficiency follows immediately. To
show the necessity part, if A−1 contains a negative entry in position (i, j), then Ahu = ej (the jth unit vector) has a solution
with ith component ui = (A−1

h ej)i < 0, so Ah cannot be monotone [5].
If A = M − R, where M is monotone and M−1R ≥ 0, and the splitting is convergent, i.e. ϱ(M−1R) < 1, where ϱ(·) is

the spectral radius, then A is monotone. Such a splitting is called a convergent weak regular splitting [6]. This is seen simply
by expanding the inverse of M−1A = I − M−1R in a Neumann series. In many applications one gets a difference operator
Lh = D − R of positive type, i.e. where D is monotone, and R ≥ 0. Then this operator is monotone if ϱ(D−1R) < 1. If D is
diagonal, such a matrix is called a diagonally dominantM-matrix [7].

A major advantage of dealing with monotone matrices is that the inverse of the matrices is bounded in maximum norm,
∥ · ∥∞, uniformly with respect to the mesh parameter h. This leads to a simple and useful discretization error estimate. To
see this, let v ≥ 0 be a normalized vector, i.e. maxi v(xi) = 1 for which Lhv ≥ α, α > 0. (Such a vector or function is called
a barrier function for the operator.) Then with Lhv = αe,

1 = ∥v∥∞ = α∥L−1
h e∥∞,

where eT = (1, 1, . . . , 1). Hence

∥L−1
h ∥∞ = ∥L−1

h e∥∞ ≤
1
α

.

Therefore the best constant, ∥L−1
h ∥∞ can be computed by solving Lhv = e. Now let Lhvh = fh be the discrete equation for

an elliptic differential operator Lu = f , where Lh is monotone. Then

Lh(u − uh) = Lhu − fh (2.2)

is the truncation error, and the discretization error can be estimated by

∥u − uh∥∞ ≤
1
α

∥Lhu − fh∥∞ .

For regular problems, i.e. with a sufficiently differentiable solution u, one can estimate the truncation error

τh := Lhu − fh

from a Taylor series expansion. Note that the remainder term of O(hk) in the Taylor expansion can be written in integral
form as

 x+h
x (x + h − s)k−1/(k − 1)! u(k)(s)ds.

There are various ways one can further improve the accuracy of the discrete solution. One can estimate the lowest order
derivative terms in the Taylor expansion by use of difference approximations on a locally extended mesh or one can use
higher order difference approximations, see Section 3. Another way is by extrapolating the solution on a mesh and its
refinement. To show this, let Lu = f be a second order elliptic differential operator approximated by a difference operator
with second order truncation error. Assume for simplicity given Dirichlet boundary conditions and assume that the solution
u ∈ C6(Ω). Let the truncation error satisfy

Lh(u − uh) = Lhu − f = h2Gu + O(h4),

where G is a differential operator of fourth order. As an example, let L = −△ be the Laplacian, then for a rectangular mesh
Gu = −

1
12 (u

(4)
x + u(4)

y ). Further let ϕ be the solution of

Lϕ = Gu in Ω, ϕ = 0 on ∂Ω.
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