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a b s t r a c t

The implementation of the Richardson Extrapolation in combination with different
numerical methods for solving systems of ordinary differential equations (ODEs) is
relatively simple, but the important requirement for stability of the computational process
may cause serious difficulties. For example, the commonly used by scientists and engineers
Trapezoidal Rule has good stability properties, but its combination with the Richardson
Extrapolation is unstable. Therefore, it is necessary to study in advance and very carefully
the stability of the new numerical methods arising when the scientists and the engineers
use this computational device in combinationwith different algorithms for solving systems
of ODEs.

We are presenting a systematic investigation of the implementation of Richardson
Extrapolation for two implicit Runge–Kuttamethods. Three numerical examples, including
an atmospheric chemical scheme used successfully in several extensive environmental
studies and described mathematically by a very stiff and badly scaled nonlinear system of
ODEs, are presented to illustrate the advantages of the presented approach. The numerical
results show that not only are the computations stable, but also the achieved accuracy
is higher when the Richardson Extrapolation is additionally applied. It will be possible to
derive similar stability and accuracy results for other implicit Runge–Kutta methods.

© 2016 Elsevier B.V. All rights reserved.

1. Statement of the problem

Consider the initial-value problem for first-order nonlinear systems of ordinary differential equations, ODEs, described
in the following way:

dy
dt

= f (t, y) , t ∈ [a, b] , a < b, y ∈ Rs, s ≥ 1, f ∈ D ⊂ R × Rs, y (a) = η, (1)
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where

(a) t is the independent variable (in most of the problems arising in physics and engineering t is the time-variable),
(b) the positive integer s is the number of equations
(c) f is a given function (it will be assumed that f is a one-valued function in the whole domain D)

and

(d) the unknown function y = y(t) is a real vector of dimension s that depends of the time-variable t .

Assume that the system defined by (1) is stiff. Then special methods, which are necessarily implicit, because of the second
Dahlquist barrier, [1], should be used in the solution process in order to ensure (or, at least, to try to ensure) the robustness
of the computational process.

It is highly desirable to select numerical methods, which have good stability properties. In fact, this is not only desirable,
but also must be satisfied when the system of ODEs is very stiff. A-stable, strongly A-stable or L-stable methods are very
popular and commonly used. It is not necessary to describe here in detail the properties of these numericalmethods, because
such information can be found in relevant textbooks on numerical solution of systems of ODEs (see, for example, [2–7]), but
two facts are very important and must be emphasized:

(a) all these methods are, as mentioned above, implicit

and

(b) their absolute stability regions contain thewholeC−, i.e. the part of the complex plane located to the left of the imaginary
axis.

The second of these two facts, condition (b), ensures the stability of the computational process, for any choice of the time-
stepsize, but only in the very special case where the scalar and linear test-problem dy/dt = λ y, t ∈ [0, ∞] , y ∈ C, λ =

α+βi ∈ C, α ≤ 0, y (0) = η ∈ C proposed in 1963 by G. Dahlquist in [1], is solved. One should expect that if the numerical
method is stable for this simple test-problem, then it is stable also when other problems are treated numerically (see, for
example, Remark 13 on p. 37 in [6]).

In the remaining part of this paper, we shall assume that

(A) implicit Runge–Kuttamethods with good stability properties are used in the numerical treatment of the system of ODEs
described by (1)

and

(B) the Richardson Extrapolation is additionally implemented in an attempt to improve the accuracy of the results.

We shall study the stability properties of the new numerical methods obtained when the Richardson Extrapolations is
combined with some stable implicit Runge–Kutta methods.

2. Implicit Runge–Kutta methods

Implicit Runge–Kutta Methods can be introduced by the following formula:

yn = yn−1 + h
m
i=1

cikni . (2)

The coefficients ci are given constants (the requirement to achieve at least first-order of accuracy implies that the sum of
the coefficients ci should be equal to one), while at an arbitrary time-step n the stage vectors kni are defined by

kni = f


tn−1 + hai, yn−1 + h

m
j=1

bijknj


, ai =

m
j=1

bij, i = 1, 2, 3, . . . ,m (3)

where bij are also some given constants, which depend on the particular numerical method.
Several alternative, but in some of the cases equivalent, formulations of implicit Runge–Kutta methods can be found for

example in [3–6].
The numerical method defined by the equalities (2) and (3) is anm-stage Fully Implicit Runge–Kutta (FIRK) Method. The

implicitness arises in (3), because the stage vectors kni appear in both sides of these m relationships. This implies that at
every time-step we have to solve a system ofms algebraic equations, which is in general nonlinear.

The FIRK Methods have two major advantages:

(a) high order of accuracy can, in principle, be achieved

and

(b) numerical schemes from this class, which have very good stability properties, can be derived.
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