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a b s t r a c t

Departing from a numerical method designed to solve ordinary differential equations,
in this manuscript we extend such approach to solve problems involving fuzzy partial
differential equations. Themethod proposed in this work is a non-recursive technique that
combines differential quadrature rules and a Picard-like scheme in order to obtain general
solutions of systems of partial differential equations derived from a general fuzzy partial
differential model. The property of stability and a bound for the Hausdorff distance are
established under suitable conditions. Several numerical examples are provided in order
to show the effectiveness of the proposed technique.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let T be a positive real number, and let r and s be positive integers. In this manuscript, we investigate the class of fuzzy
partial differential equations

L(r)
t ũ(x, t) + γ L(s)

x (ũ(x, t)) = f̃ (x, t, k), (1.1)

subject to suitable boundary data and satisfying the initial conditions

L(i)
t ũ(x, 0) = ãi(x, q̃), for all i = 0, . . . , r − 1, (1.2)

where L(i)
t is the ith-order derivative operator with respect to t for each i = 0, 1, . . . , r , and L(s)

x the sth-order derivative with
respect to x. Here, ũ(x, t) represents the unknown fuzzy function on the vector (x, t) ∈ [0, 1]× [0, T ], while q̃ and k̃ denote
vectors consisting of fuzzy numbers.

It is worth noticing that (1.1) may be seen as the fuzzification via the Zadeh’s extension principle of the same equation
but without fuzzy variables and parameters. Following L.A. Zadeh [1], the introduction of ‘fuzziness’ in (1.1) means to take
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into account an uncertainty in the value of the equation parameters which cannot be identified as randomness. Fuzziness
plays an important role in decision processes [2] and in regression analysis [3,4]. It is also an important tool in modeling
realistic problems in science and engineering which traditionally involve ordinary differential equations [5,6]. In the case of
partial differential equations, fuzzinessmay be employed also; however, the use of this tool for partial differential equations
has not been investigated thoroughly in the specialized literature. Indeed, few reports have been devoted to the discussion
on the fuzzification of partial differential models.

A well-known approach for obtaining analytic solutions of fuzzy partial differential equations is to fuzzify the solution
of the corresponding deterministic partial differential model. This approach was originally proposed by J.J. Buckley and
T. Feuring in the article [7], in which the authors discuss the existence of the so-called Buckley–Feuring solution through
some particular boundary-value problems. It is important to mention that this method has been recently applied to non-
polynomial fuzzy partial differential equations [8], and that it has been used as a way to obtain approximate solutions,
too [9]. In the latter problem, the approximations have been calculated in the crisp case by means of the Adomian method,
and then it was verified that they are in fact Buckley–Feuring solutions. Unfortunately, the problem with this approach is
that the Buckley–Feuring solutions may not exist.

Some difference methods to find numerical solutions for linear fuzzy parabolic and hyperbolic partial differential
equations have been proposed in [10]. A fuzzy two-dimensional differential transform method was used in [11] as a semi-
analytical technique to calculate approximate solutions of fuzzy partial differential equations. In turn, the fuzzy solution of
classical linear partial differential equations (like the heat, thewave and the Poisson equations)was obtained in [12] through
the fuzzification of the deterministic solution. In the present work, we extend the approach proposed in [13] to solve (1.1).
More precisely, we propose a numerical scheme combining differential quadrature rules [14] (which provide high-order
finite-difference approximations) and a Picard-like recursion. In spite of its recursive nature, the proposed approach leads
to a final non-recursive approximate solution bymeans of operational matrices and vectors of known quantities. The results
obtained through this method are compared against solutions available in the literature, obtaining satisfactory results.

This work is sectioned as follows. In Section 2, we provide the basic definitions on fuzzy sets, α-cuts of fuzzy sets,
fuzzy numbers, the Hausdorff distance between fuzzy numbers, Zadeh’s extension principle and fuzzy partial differential
equations. Section 3 is devoted to introducing the differential quadrature-based Picard-like method to solve a system of
partial differential equations associated to fuzzy models of the form (1.1). In Section 4, we derive some analytical results
which include a bound for the Hausdorff distance and a stability criterion. In Section 5, we provide numerical comparisons
against results available in the literature, in order to illustrate the performance of our method in some known scenarios.
This work closes with a section of concluding remarks.

2. Preliminaries

2.1. Definitions

We start off this section by establishing the meaning of some basic notions employed in this work. Throughout, we will
use U to represent a nonempty and fixed (though arbitrary) closed interval of R.

Definition 2.1. A fuzzy set w̃ on U is defined by a membership function µw(x) : U → [0, 1]. For each x ∈ U , the number
µw(x) is called the degree of x in w̃.

From a rigorous perspective, a fuzzy set is an ordered pair (U, µ) consisting of a set U and a membership function
µ : U → [0, 1]. In the practice, µ identifies the degree in which certain attribute w is present in each member of U .
The notation w̃ serves to represent both the pair (U, µ) and the fact that the characteristic of interest is an attribute w.

Definition 2.2. Let w̃ be a fuzzy set on U . The crisp subset supp(w̃) of U whose members are those elements of U which
have nonzero membership grades in w̃ is called the support of w̃, that is, supp (w̃) = {x ∈ U : µw(x) > 0}.

Definition 2.3. Let w̃ be a fuzzy set on U , and let cl(supp(w̃)) represent the closure of the support of w̃ in the topology of
U relative to the standard topology of R. An α-cut of w̃ is the crisp set denoted by [w̃]α , and defined by

w̃

α

=


{x ∈ U : µw(x) ≥ α} , if α > 0,
cl(supp(w̃)), if α = 0. (2.1)

Definition 2.4. A fuzzy set w̃ on U is a fuzzy number if the following conditions are satisfied:
• w̃ is normal on U , that is, maxx∈U µw(x) = 1,
• w̃ is convex on U , meaning that the inequality µw(λx + (1 − λ)z) ≥ min(µw(x), µw(z)) is satisfied for each x, z ∈ U

and each λ ∈ [0, 1],
• w̃ is upper semi-continuous and
• w̃ has bounded support.

In view that α-cuts of fuzzy numbers are always closed and bounded intervals [15], we can readily rewrite them in
parametric form. The next definition describes such representation.
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