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a b s t r a c t

A secondorder Exponential TimeDifferencing (ETD)method for reaction–diffusion systems
which uses a real distinct poles discretization method for the underlying matrix exponen-
tials is developed. Themethod is established to be stable and second order convergent. It is
demonstrated to be robust for problems involving non-smooth initial and boundary condi-
tions and steep solution gradients. We discuss several advantages over competing second
order ETD schemes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Time-dependent reaction–diffusion–advection equations are mathematical models of the form

ut + ∇ · (a⃗u) = ∇(D∇u) + f (u)

used in many applications, cf. [1–3]. The advection term in this equation can be handled with our methods, according to
whether the resulting abstract operator remains sectorial. Generally, these can be classified as semilinear parabolic IVP

ut + Au = f (t, u) in X, t ∈ (0, T ) ,

u(0, ·) = u0,

where−A generates an analytic semigroup E(t) = e−At in X and f a sufficiently smooth nonlinear reaction term.We assume
X is a Banach space and A : D(A) → X is a sectorial operator. For details and bounds for the semigroup E(t) see [4,5].

Among many time stepping methods developed to solve such parabolic PDE’s are the class of Exponential Time Differ-
encing (ETD) schemes. These schemes search for solutions to the integral formulation of the IVP, i.e.

u(t) = e−tAu0 +

 t

0
e−(t−s)Af (s, u(s))ds ∀t ∈ [0, T ].

The major attraction of ETD schemes is the separate treatment of the linear part by the discretization of the exponential
operator and using the advantage of the one-step variation of constants integral formula to avoid the necessity of iteration
of the nonlinearity, which reduces computational time and preserves accuracy.

In 2002, Cox and Matthews [6] introduced a class of exponential time differencing schemes, ETD Runge–Kutta schemes.
A major challenge in that work and for other schemes as well as more general problems has been the efficient resolution
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of the matrix exponentials. B. Kleefeld et al. introduced an ETD Crank–Nicolson Scheme [7] which utilizes a Padé-(1,1)
rational approximation for the matrix exponential. The resulting scheme, though highly efficient, is not L-stable and hence
does not damp out spurious oscillations generated by non-smooth initial and boundary conditions. A follow-up paper [8]
addresses this problem by proposing the use of a Padé-(0,2) rational approximation, which is L-acceptable. However, the
partial fraction decomposition of this approximation, used in deriving the scheme, has complex poles and requires complex
arithmetic in all applications, which may slow the evolution process, depending on the matrices.

In this work, we propose a new Exponential Time Differencing Scheme, ETD-RDP, which utilizes a non-Padé rational
approximation with real and distinct poles for approximating the matrix exponentials. The scheme is L-stable and thus
damps out spurious oscillations. The added advantage of having real and distinct poles for the partial fraction decomposition
is that we avoid complex arithmetic and can take advantage of parallel implementation to speed up computation.

2. ETD-schemes

Define V = D(Aα) ⊂ X , where 0 ≤ α ≤ 1with A being a closed linear invertible operator. The linear space V is a Banach
space, Xα with norm ∥v∥V = ∥Aαv∥. Our main assumption on f is the following:

Assumption 1 ([4,5]). Let Y be an open subset ofℜ×Xα and f : Y → X satisfies: For every (t, u) ∈ Y there is a neighborhood
V ⊂ Y and constants L ≤ 0, 0 < θ ≤ 1 such that

∥f (t1, u1) − f (t2, u2)∥ ≤ L(|t1 − t2|θ + ∥u1 − u2∥α)

for all (ti, ui) ∈ V .

Then standard semigroup theory [4,5] yields that for every initial data (t0, u0) ∈ Y the initial value problem has a unique
local solution

u ∈ C([t0, t) : X)


C1((t0, t1) : X)

where t1 = t1(t0, u0) > t0. The local, mild solution satisfies the integral formulation of our IVP, which can be reformulated
into the recurrence relation

u(tn+1) = e−Aku(tn) +

 tn+1

tn
e−A(tn+1−s)f (s, u(s))ds.

By setting s = tn + τk with tn = nk(0 ≤ k ≤ k0; 0 ≤ n ≤ N) and τ ∈ [0, 1] we can reduce the recurrence relation to the
more useful form

u(tn+1) = e−Aku(tn) + k
 1

0
e−Ak(1−τ)f (tn + τk, u(tn + τk))dτ ,

which is the basis for deriving ETD schemes.
Methods of various order and properties can be obtained by different discretizations of the integral. Here, we focus on

second order ETD schemes, which employ a linear approximation of the non-linear function

f (tn + s, u(tn + s)) ≈ f (tn, u(tn)) + s

f (tn+1, u(tn+1)) − f (tn, u(tn))

k


, s = τk ∈ [0, k],

to obtain the semi-discrete scheme

un+1 = e−Akun + A−1(I − e−Ak)f (un) +
A−2

k
(kA − I + e−Ak)[f (un+1) − f (un)].

Towards a semidiscrete scheme, a locally second order approximation of un+1 will be employed:

u∗
= e−Akun + A−1(I − e−Ak)f (un).

The semi-discrete scheme then becomes

un+1 = e−Akun + A−1(I − e−Ak)f (un) +
A−2

k
(kA − I + e−Ak)[f (u∗) − f (un)] (1)

u∗
= e−Akun + A−1(I − e−Ak)f (un)

where we assume the spatial operator A has been discretized to a matrix through any of many standard techniques such as
finite differences, finite elements, spectral methods, etc.
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