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a b s t r a c t

This paper develops a discontinuous Galerkin (DG) finite element differential calculus
theory for approximating weak derivatives of Sobolev functions and piecewise Sobolev
functions. By introducing numerical one-sided derivatives as building blocks, various first
and second order numerical operators such as the gradient, divergence, Hessian, and
Laplacian operator are defined, and their corresponding calculus rules are established.
Among the calculus rules are product and chain rules, integration by parts formulas and the
divergence theorem. Approximation properties and the relationship between the proposed
DG finite element numerical derivatives and some well-known finite difference numerical
derivative formulas on Cartesian grids are also established. Besides independent interest
in numerical differentiation, the primary motivation and goal of developing the DG finite
element differential calculus is to solve partial differential equations. It is shown that
several existing finite element, finite difference anddiscontinuousGalerkinmethods can be
rewritten compactly using the proposed DG finite element differential calculus framework.
Moreover, new discontinuous Galerkin methods for linear and nonlinear PDEs are also
obtained from the framework.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Numerical differentiation is an old but basic topic in numerical mathematics. Compared to the large amount of literature
on numerical integration, numerical differentiation is amuch less studied topic. Given a differentiable function, the available
numerical methods for computing its derivatives are indeed very limited. There are essentially only two such methods
(cf. [1]). One method is to approximate derivatives by difference quotients. The other is to first approximate the given
function (or its values at a set of points) by a simpler function (e.g., polynomial, rational function and piecewise polynomial)
and then to use the derivative of the approximate function as an approximation to the sought-after derivative. The two types
of classicalmethodsworkwell if the given function is sufficiently smooth. However, the two classicalmethods produce large
errors or divergent approximations if the given function is rough, which is often the case when the function is a solution of
a linear or nonlinear partial differential equation (PDE).
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For boundary value and initial–boundary value problems, classical solutions often do not exist. Consequently, one has
to deal with generalized or weak solutions which are defined using a variational setting for linear and quasilinear PDEs.
Although numerical methods for PDEs implicitly give rise to methods for approximating weak derivatives (in fact, combina-
tions of weak derivatives) of the solution functions (cf. [2–5]), to the best of our knowledge, there is no systematic study and
theory in the literature on how to approximate weak derivatives of a given (not-so-smooth) function. Moreover, for linear
second order PDEs of non-divergence form and fully nonlinear PDEs, it is not possible to derive variational weak formula-
tions using integration by parts. As a result, weak solution concepts for those types of PDEs are different. The best known and
most successful one is the viscosity solution concept (cf. [6,7] and the references therein). To directly approximate viscosity
solutions, which in general are only continuous functions, one must approximate their derivatives in some appropriately
defined sense offline (cf. [8,9]) and then substitute the numerical derivatives for the (formal) derivatives appearing in the
PDEs. Clearly, to make such an intuitive approach work, the key is to construct ‘‘correct’’ numerical derivatives and to use
them judiciously to build numerical schemes.

This paper addresses the above two fundamental issues. The specific goals of this paper are twofold. First, we system-
atically develop a computational framework for approximating weak derivatives and a new discontinuous Galerkin (DG)
finite element differential calculus theory. Keeping in mind the approximation of fully nonlinear PDEs, we introduce locally
defined, one-sided numerical derivatives for piecewise weakly differentiable functions. Using the newly defined one-sided
numerical derivatives as building blocks, we then define a host of first and second order sided numerical differential oper-
ators including the gradient, divergence, curl, Hessian and Laplace operators. To ensure the usefulness and consistency of
these numerical operators, we establish basic calculus rules for them. Among the rules are the product and the chain rule,
integration by parts formulas and the divergence theorem. We establish some approximation properties of the proposed
finite element numerical derivatives and show that they coincide with well-known finite difference derivative formulas
on Cartesian grids. Consequently, our finite element numerical derivatives are natural generalizations of well-known finite
difference numerical derivatives on general meshes. These results are of independent interest in numerical differentiation.
Second, we present some applications of the proposed DG finite element differential calculus to build numerical methods for
linear and nonlinear partial differential equations. This is done based on a very simple idea; that is, we replace the (formal)
differential operators in the given PDE by their corresponding DG finite element numerical operators and project (in the L2
sense) the resulting equation onto the discontinuous Galerkin finite element space V h

r . In addition, we include additional
stability terms if necessary. We show that the resulting numerical methods not only recover several existing finite differ-
ence, finite element and discontinuous Galerkin methods, but also give rise to some new numerical schemes for both linear
and nonlinear PDE problems.

The remainder of this paper is organized as follows. In Section 2we introduce themesh and space notation used through-
out the paper. In Section 3we give the definitions of our DG finite element numerical derivatives and various first and second
order numerical differential operators. In Section 4we establish an approximation property and various calculus rules for the
DG finite element numerical derivatives and operators. In Section 5 we discuss the implementation aspects of the numer-
ical derivatives and operators. Finally, in Section 6 we present several applications of the proposed discontinuous Galerkin
finite element differential calculus to numerical solutions of prototypical linear and nonlinear PDEs including the Poisson
equation, the biharmonic equation, second order linear elliptic PDEs in non-divergence form, first order fully nonlinear
Hamilton–Jacobi equations and second order fully nonlinear Monge–Ampère equations.

2. Preliminaries

Let d be a positive integer,Ω ⊂ Rd be a bounded open domain, and Th denote a locally quasi-uniform and shape-regular
partition ofΩ [10]. Let E I

h denote the set of all interior faces/edges of Th, E
B
h denote the set of all boundary faces/edges of Th,

and Eh := E I
h ∪ EB

h .
Let p ∈ [1,∞] and m ≥ 0 be an integer. Define the following piecewise Wm,p and piecewise Cm spaces with respect to

the mesh Th:

Wm,p(Th) :=


K∈Th

Wm,p(K), Cm(Th) :=


K∈Th

Cm(K).

When p = 2, we set Hm(Th) := Wm,2(Th). We also define the analogous piecewise vector-valued spaces as Hm(Th)

:= [Hm(Th)]
d,Wm,p(Th) = [Wm,p(Th)]

d, Cm(Th) = [Cm(Th)]
d, and the matrix-valued spaces H̃m(Th) := [Hm(Th)]

d×d,

W̃m,p(Th) := [Wm,p(Th)]
d×d, and C̃m(Th) = [Cm(Th)]

d×d. The piecewise L2-inner product over the mesh Th is given by

(v,w)Th :=


K∈Th


K
vw dx,

and for a set Sh ⊂ Eh, the piecewise L2-inner product over Sh is given by
v,w


Sh

:=


e∈Sh


e
vw ds.

Angled brackets without subscripts

·, ·


represent the dual pairing between some Banach space and its dual.
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