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a b s t r a c t

A recently developed multigrid method (Botto, 2013), based on the concept of volume
fraction, has been tested for the inversion of the Helmholz-type equation for the free
surface in the environmental public domain code COHERENS. The volume fraction concept
is particularly interesting for coarse grid cells that are agglomerated from both dry and
wet fine grid cells at irregular coastlines. At these locations, modifying the prolongation
operator and the coarse grid discretization, using the volume fraction, results in better
convergence. However, as convergence deteriorates in the case of small, elongated islands
that tend to disappear by the multigrid coarsening procedure, a correction is proposed,
yielding good convergence rates, irrespective of the presence of small or large islands. The
method is tested extensively for the inversion of the academic Poisson equation. Larger test
cases, solving the Helmholz-type equation, prove the applicability for real-life applications
of environmental flows.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When performing numerical simulations, in many applications an elliptic Poisson-like equation arises, which has to be
inverted in an efficient way. Examples include the pressure Poisson equation in incompressible fluid flow and the implicit
treatment of diffusion terms in mass and heat transfer applications. In environmental fluid mechanics, such an elliptic
equation arises whenever the water level (or free surface) is treated implicitly and a time dependent Poisson equation (the
Helmholz equation), describing the water wave dynamics, is obtained [1]. The inversion of the elliptic equation forms the
most time-consuming part of simulation codes and hence requires an efficient numerical solver.

The efficient inversion of the Poisson equation has historically been dealt with by many researchers. As standard
iterative solvers (Jacobi, Gauss–Seidel) feature poor convergence characteristics,more efficient solvers have been developed,
including Krylov-type solvers, such as preconditioned conjugate-gradient (PCG) and geometric and algebraic multigrid
solvers (GMG and AMG). From the available solutions, it is generally believed that geometric multigrid solvers have the
greatest potential in inverting the Poisson equation in the most efficient way, both in terms of memory requirements and
CPU-time, particularly for rectangular, uniform and isotropic domains. The theory and applications concerning GMGarewell
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established (e.g. [2]), however, there remain certain cases where the convergence deteriorates or even fails, which form the
subject of current research activities in this field.

One of these issues is the treatment of boundaries that do not align with the grid on all levels of coarsening. Indeed: an
essential ingredient of GMG is the representation of the discretized equation on recursively coarsenedmeshes. This strategy
follows from the observation that standard iterative solvers tend to resolve the high-frequency component of the error rather
quickly, but fail to do so for the low-frequency components. On coarser meshes, this low-frequency component is seen as
high-frequent relative to the grid spacing. By using cheap standard iterative solvers on different levels of coarsened grids,
all components of the error can be resolved at high convergence rates. In GMG, a grid cell of a coarser level is obtained by
agglomeration of a number of fine grid cells. For structured grids, a coarse grid cell typically consists of 4 fine grid cells in 2-D.
Wherever boundaries intersect these cells, special measures are needed. Such cases frequently appear in case of immersed
boundaries, but also if a stair-case or voxelized representation of the boundary is present on the finest grid level, coarser
cells may consist of a combination of interior and exterior cells.

The problem is even more troublesome in case of small islands, that have a tendency to disappear at coarse levels. In
that case, the geometric discrepancy between the fine and coarser levels introduces spurious eigenmodes, that are not
damped effectively by the algorithm. Mikulinsky [3] addresses the issue by defining a region of influence. On this basis, it is
determined whether the island has to disappear on coarser levels or not. Good convergence rates are achieved by additional
smoothing operations in a region near the boundary or by a recombination of iterants [4]. Because of the disappearance
of small geometric features, the latter approach was also found necessary in [5] where geometric multigrid was used as a
preconditioner for the conjugate-gradient solution of the voxelized Poisson equation. The multigrid solution of [6] requires
additional relaxation steps near boundaries, where the interpolation of inner cells is treated separately from the ghost
cells, thereby extrapolating the values at cells inside the solid domain. A special type of boundary condition enforcement is
introduced,makinguse of dual time stepping to stabilize the solution. In [7], the efficiency ofGMG,AMGandPCG is compared
for a (Dirichlet) boundary, prescribed by the level-set method, favoring the GMG approach, provided the interpolation near
boundaries is adjusted to properly take into account the boundary position. In combination with the immersed boundary
method, Zhu and Peskin [8] use GMG in combination with a spreading of the boundary over a number of grid cells at
coarser levels, whereas Udaykumar et al. [9] introduce the concept of volume fraction to determine whether a coarsened
cell, agglomerating fluid and solid fine cells, is treated as fluid or solid. [10] addresses the volume fraction as amask function
to determine the position of the boundary, which is used to adjust the stencil of the coarse grid discretization. The technique
is referred to as second order accurate, but fails to converge in case of geometric discrepancies between grid levels. In this
case, a first order reconstruction of the boundary is used instead.

In the present paper, we follow the strategy of Botto [11], showing many similarities with [9]. In [11], the concept of
volume fraction is further elaborated and good convergence rates are obtained for relatively large solid inclusions. His
GMG implementation has the benefit of being straightforward to implement, requiring only small modifications to the
standard GMG solver for domains without inclusions or irregular boundaries. We implemented the solver in the open-
domain software COHERENS [12] for 3D hydrostatic free surface flow, to efficiently solve the Helmholz equation for the
free surface. Focusing first on the inversion of the Poisson equation, we show good convergence characteristics for test
cases with large geometric features (i.c. irregular coastlines). In particular, the test cases, presented in [11] are successfully
reproduced. However, for geometric features that tend to disappear (i.c. narrow, elongated islands), convergence is observed
to deteriorate. Inspired by [7,10], we present a simple GMG strategy for the combined presence of large and small geometric
features, that shows good convergence rates, irrespective of the presence of these features.

The paper is organized as follows. In Section 2, the governing equations and discretizations are presented. Section 3
provides the details of the GMG algorithm and the different measures implemented to deal with the large and small
geometric boundaries. Section 4 shows the numerical results for a set of academic test cases. Finally, Section 5 illustrates
the applicability of the method on a real-life application.

2. Governing equations and discretization

The multigrid solver is implemented in COHERENS [12] and is used to invert the elliptic equation for the free surface
that arises from the semi-implicit solution algorithm, implemented previously in the version v2.4 [1]. COHERENS is a 3D
hydrostatic code, that can be used to simulate tidal flows, in combination with transport of salinity, temperature, sediment
or biological components. The motion of the flow is governed by the Navier–Stokes, equations, in which the pressure is
treated as purely hydrostatic. This simplification is interesting, because it eliminates the inversion of the pressure Poisson
equation. Instead, a 2D, integrated, elliptic equation for the free surface needs inversion. The governing equations are in 3D:
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