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a b s t r a c t

In this work we consider a mathematical model for two-phase flow in porous media. The
fluids are assumed immiscible and incompressible and the solid matrix non-deformable.
The mathematical model for the two-phase flow is written in terms of the global pressure
and a complementary pressure (obtained byusing theKirchhoff transformation) as primary
unknowns. For the spatial discretization, finite volumes have been used (more precisely
the multi-point flux approximation method) and in time the backward Euler method has
been employed. We present here a new linearization scheme for the nonlinear system
arising after the temporal and spatial discretization. We show that the scheme is linearly
convergent. Numerical experiments are presented that sustain the theoretical results.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Water and soil pollution, CO2 storage, enhanced oil recovery and nuclearwastemanagement are typical examples of two-
phase porous media flows with obvious high societal relevance. A crucial role in understanding two-phase flow in porous
media is played by numerical simulations, including mathematical modeling and numerical methods.

Mathematical models of two-phase flow in porous media consist of coupled, nonlinear and possibly degenerate partial
differential equations. This makes the design and implementation of efficient numerical schemes for two-phase flow in
porous media a challenging task. Locally conservative discretizations such as finite volume [1–5] and mixed finite element
[6,7] methods are popular spatial discretization as they alleviate many stability issues. Furthermore, often long time-scales
are of interest in applications, so fully implicit temporal discretizations are, in general, preferred.

At each time step, the spatial and temporal discretizations thus lead to a large system of nonlinear equations. This system
is usually solved by either Picard’s method [8] or Newton’s method [9,8,10–13]. The former is linearly convergent while the
latter is quadratically convergent. The quadratic convergence of Newton’s method comes at the price of only local conver-
gence in solution space, however it remains a very powerful tool when applied to systems arising from discretization of
parabolic equations. This is because, in this case, the starting iteration is chosen as the solution at the last time step and the
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initial error can be controlled. In this way, by adjusting the time step size one ensures that the starting iteration is in the
convergence region of the method. In order to apply Newton’s method to degenerate problems one needs a further regular-
ization step [11–13], which may alter the quality of the solution (in particular the mass balance). Moreover, the time-step
restriction depends on the mesh diameter and on the size of the regularization step, which may be relatively restrictive in
practice (see [12,13] for a priori derived convergence conditions for the Newton method when applied to transport equa-
tions). Thus, we identify two main concerns of Newton’s method: the need of regularization for degenerate problems, as
well as the time-step constraint implicitly imposed by the convergence region.

A possible improvement to Newton’s method for degenerate problems is the semismooth Newton method [14]. This
method is of a higher algorithmic complexity and requires additional reformulation of the model by adding so called com-
plementary conditions. The semismooth Newton method can be applied to two-phase flow or multicomponent transport
with much better results compared to Newton’s method (see [14–16]).

In this work we propose and analyze a new linearization scheme for finite volume discretization schemes for two-phase
flow. The proposed scheme is a monotone fixed point iteration [17,18]. We show the linear convergence and robustness of
the scheme, subject to a relatively mild restriction on the time step size but independent of grid size. Moreover, the scheme
does not involve the calculation of derivatives, which is an advantage over both Picard and Newton methods. Both analysis
and numerical experiments indicate that the new scheme is a valuable alternative to Picard or Newton-type methods for
solving two-phase flow in porous media.

The paper is structured as follows. In Section 2, we present the two-phase model considered here, describe the lineariza-
tion scheme and show its convergence. The numerical results are given in Section 3, which show the applicability of the
method. The paper ends with some concluding remarks in Section 4.

2. Mathematical model and discretization

We consider a simplified mathematical model for two-phase flow in porous media. The fluids are immiscible and in-
compressible and the solid matrix is non-deformable. The formulation adopted here uses the global pressure and a com-
plementary pressure (obtained by using the Kirchhoff transformation) as primary unknowns (see [19–21]). For simplicity
of exposition, we assume spatially homogeneous relative permeability and capillary pressure functions, and no gravity.

Throughout this paper we use common notations from functional analysis. The domain Ω ⊂ Rd, d being the dimension
of the space, is open, bounded and with a Lipschitz continuous boundary. By C wemean a positive constant, not depending
on the unknowns or the discretization parameters.

2.1. Governing equations

Mass (volume) balance:

∂s
∂t

+ ∇ · q⃗w = f1(s). (1)

Fractional phase flux

q⃗w = −k∇θ + fw(s)q⃗. (2)

Conservation of total phase volumes

∇ · q⃗ = f2(s). (3)

Darcy’s law for total flow

q⃗ = −λ(s)k∇p. (4)

The equations hold true in Ω × [0, T ], with T denoting the final time. The system is closed by an invertible relationship
between the saturation s and the complementary pressure θ , i.e. s = s(θ) and constitutive laws for the various functions
fα, α ∈ {1, 2, w}. The model is a reformulation of the two-phase system

∂(φραsα)

∂t
+ ∇ · (ρα q⃗α) = Ψα, α = w, n, (5)

q⃗α = −
kr,α
µα

k∇pα, α = w, n, (6)

sw + sn = 1, (7)

pn − pw = pcap(sw). (8)

We denoted by w and n the wetting and the non-wetting phase, respectively. Here: the porosity φ, the densities ρw, ρn
and the viscosities µw, µn are constants. Furthermore, there are no exchange terms between the phases, and the capillary
pressure pcap and the relative permeabilities kr,w, kr,n are assumed known, monotone and Lipschitz continuous functions of
the wetting phase saturation sw . To transform the system (5)–(8) into the system (1)–(4) one introduces the global pressure
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