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a b s t r a c t

In this contribution we consider a coupled bulk–surface reaction–diffusion system and
for infinitely fast bulk diffusion its formal reduction to a non-local surface PDE model.
Thereby,we review results of linear stability analyses for bothmodels showing that Turing-
type instabilities can occur for equal lateral diffusion coefficients. The stability results are
confirmedbynewnumerical results. As a specific application,we study amodel for a spatial
and reaction cycle of signalling molecules in a cell.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Although the analytic results and numerical methods may apply to a broader class of applications, we describe the con-
sidered reaction–diffusion system bymeans of the specific applicationwe have inmind as a standard example, the so-called
GTPase cycle.

GTPase (GTP binding proteins) are signalling molecules appearing on the cell membrane in active and inactive state and
play an important role for many cell processes such as cellular transport, cytoskeleton organization, and they also influence
cell shape and movement [1,2]. In particular, localization of active GTPase precedes the budding of yeast [3].

On the membrane GTPase proteins cycle between an active and an inactive state. This cycle corresponds to enzyme re-
actions of inactive proteins into active proteins and vice versa. In addition to this reaction cycle on the membrane, there
is a spatial cycle of inactive GTPase proteins between cytosolic (inside the membrane) state and membrane bound state,
which leads to attachment/detachment processes at the cell membrane. In this scenario we are interested in the question
whether a Turing-type mechanism (based on reaction and diffusion) can be responsible for localization of active proteins at
the membrane.

The mathematical modelling of these processes leads us to a system of reaction–diffusion equations for the concentra-
tions of membrane bound active and inactive GTPase molecules and of cytosolic inactive GTPase molecules [4]. This reac-
tion–diffusion system is a bulk–surface system of PDE’s due to the different dimensionalities of the involved quantities and
it is related to amodel in [5] withmore chemical species under consideration and scaling factors accounting for the different
dimensions of membrane and cytosolic cell volume.
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It is reported that active GTPase molecules (in complex with further proteins) serve as a further even more efficient
catalyst for the activation reaction [6]. This positive feedback has to be included into the model for the reaction kinetics, in
order to be able to observe a Turing-like instability in the reaction–diffusion system.

In addition to the above bulk–surface reaction–diffusion system we obtain in the formal limit of infinitely fast volume
(cytosolic) diffusion a reduced non-local surface reaction–diffusion system, which is also topic of our investigations in this
contribution.

In the subsequent modelling Section 2, we briefly introduce the mathematical models for the GTPase cycle proposed
in [4]. In Section 3, we review the results of the analysis of the linear stability of spatially homogeneous stationary states
for the above mentioned reduced non-local model [4,7] (see also [8]), and we find two scenarios for an instability [7]. While
the first requires different diffusion constants for the two membrane bound species – which is common to classical Turing
instabilities, but not a reasonable assumption in this application – the second is also possible for equal lateral diffusion
coefficients due to the non-local nature of the model. In particular we find that the second scenario is different from a
standard Turing-type instability as in this case the concentration of activated GTPase in a single spot (most typical in most
examples of cell polarization) is always preferred independent of variations in the parameter values. For precise instability
criteria for a specific choice of f and q we refer to [4]. Recently, another non-local reaction–diffusion model for the GTPase
cycle has been introduced and analysed in [9].

The results of the linear stability analysis are confirmed by numerical investigations. As a first example we demonstrate
the instability of the ODE system corresponding to the non-local model with respect to spatially heterogeneous
perturbations, which is a particular property of the model. In the second example we apply the parametric finite element
discretization of the non-local surface reaction–diffusion system introduced in [4] to numerically investigate an instability
on a complicated surface, for which we take as an example a perturbed sphere.

The results from the linear stability analysis of the full coupled bulk–surface reaction–diffusion system presented in
Section 4 are for sufficiently large cytosolic diffusion constant similar to the reduced non-local case. For the numerical
treatment of this model, we use a diffuse-interface method as in [7]. As a numerical example, we consider two concentric
spheres with the bulk phase in between. The results show that the concentration of active proteins becomes constant and
maximal in the inner sphere, while afterwards additionally a pattern with one maximal spot of the concentration of active
GTPase proteins on the outer sphere appears.

The above bulk–surface model has been extended to time dependent membranes and coupled to fluid flow outside
and inside the membrane in [10]. The work [11] of Levine and Rappel is also closely related. There the authors study the
linear stability of a two variable bulk–surface system consisting of a diffusion system in the cell and a reaction system on
the membrane, which is numerically validated by a phase-field approach. Numerical approaches for coupled bulk–surface
systems include finite element [12] and finite volume [13] techniques as well as diffuse-interface methods [11,14]. For the
numerical treatment of reaction–diffusion systems on evolving surfaces we refer to [15,16] in the case of surface finite
element methods and to [17] for a level set approach. Moreover, we would like to point a recent contribution on a level set
method for reaction–advection–diffusion systems on time dependent surfaces [18].

2. Model description

In this work, we study a system of coupled bulk–surface reaction–diffusion equations introduced in [4] in order to math-
ematically describe a reaction cycle and a spatial cycle of signalling (GTPase) proteins. The mathematical model proposed
in [4] encodes an improved coupling of processeswith different dimensionalities.We consider the cytosolic volumeΩ1 ⊂ R3

of the cell and assume that the domainΩ1 is a bounded, connected, open set. The cellmembrane ismathematically described
by a smooth, closed surface Γ := ∂Ω1. Moreover, we denote by ν the outer unit normal ofΩ1 on Γ . Further, we consider
smooth concentrations V : Ω1 × I → R, u, v : Γ × I → R of cytosolic inactive, membrane-bound active, and membrane-
bound inactive GTPase, respectively, and we assume that u, v and V satisfy the non-dimensional coupled reaction–diffusion
system

∂tV = D1V inΩ1 × I, (1)
∂tu = ∆Γ u + γ f (u, v) on Γ × I, (2)

∂tv = d∆Γ v + γ (−f (u, v)+ q(u, v, V )) on Γ × I, (3)

−D∇V · ν = γ q(u, v, V ) on Γ × I, (4)

where f describes the activation/inactivation reaction kinetics, and attachment/detachment kinetics at the membrane are
specified by q. We present as a specific example the mathematical model for the GTPase cycle from [4] with explicit choices

q(u, v, V ) = a6V (1 − (u + v))+ − a−6v, (5)

f (u, v) =


a1 + (a3 − a1)

u
a2 + u


v − a4

u
a5 + u

(6)

for f and q, where a1, . . . , a6, a−6 denote dimensionless kinetic coefficients.
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