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a b s t r a c t

We develop and study numerically two families of variational time discretization schemes
formixed finite element approximations applied to nonstationary diffusion problems. Con-
tinuous and discontinuous approximations of the time variable are encountered. The solu-
tion of the arising algebraic block system of equations by a Schur complement technique is
described and an efficient preconditioner for the iterative solution process is constructed.
The expected higher order rates of convergence are demonstrated in numerical exper-
iments. Moreover, superconvergence properties are verified. Further, the efficiency and
stability of the approaches are illustrated for a more sophisticated three-dimensional ap-
plication of practical interest with discontinuous and anisotropic material properties.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulations of time dependent single and multiphase phase flow andmulticomponent transport processes in
porous media are desirable in several fields of natural sciences and in a large number of branches of technology; cf. e.g. [1].
The categories are far from clear-cut, but include environmental engineering (groundwater and soil contamination), hydrol-
ogy, geophysics, agricultural, sanitary and chemical engineering, metal casting, ceramic engineering as well as petroleum
engineering, geothermal energy recovery, carbon (dioxide) capture and storage in geological structures, gas injection as an
efficient method of enhanced oil recovery and the technologies of wood, paper, cement, lightweight composite materials
(aerospace engineering) and pharmaceutics. Further, temperature changes may accompany the physical and chemical pro-
cesses. Temperature variation then influences the multiphase flow and multicomponent transport by altering physical and
chemical properties of the phases such as densities, viscosities and reaction rates.

The accurate numerical approximation of such flow and transport processes in heterogeneous and anisotropic porous
media continues to be a challenging task. As a prototypemodel systemwemay consider the nonlinear set of coupled partial
differential equations

∂t(Θcl)+ ∇ · (Dl∇cl − Q cl) = Rl(c1, . . . , cL) inΩ × I, (1.1)
cl = gD,l on ΓD × I, (1.2)

−(Dl∇cl − Q cl) · n = gF ,i on ΓF × I, (1.3)

cl(·, 0) = c0l inΩ × {0} (1.4)
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for l = 1, . . . , L, with L ∈ N. Eq. (1.1) includes the effects of advective, diffusive and reactive transport in a multicomponent
system with the unknown vector c = (c1, . . . , cL)⊤ of concentrations of mobile chemical species. In (1.1)–(1.4), we denote
by I = (0, T ) a finite time interval and Ω ⊂ Rd, with d = 2 or d = 3, is a domain with Lipschitz-continuous boundary
Γ which is split into a flux boundary ΓF and a Dirichlet boundary ΓD. The outer unit normal vector to Ω is denoted by
n. The rates Ri(c1, . . . , cL) model chemical reaction rates and sources and sinks. Further, Θ denotes the volumetric water
content, Q the Darcy flux and Dl ∈ Rd,d, with d = 2 or d = 3, is the diffusion–dispersion tensor of the l-th chemical species.
If reactive transport in porous media is considered, the water flux Q and the volumetric water content Θ are typically
computed by solving Richards’ equation, equipped with appropriate initial and boundary conditions, which (in its mixed
pressure formulation) reads as

∂t(Θ(ψ))+ ∇ · Q = 0, Q = −K(Θ(ψ))∇(ψ + z). (1.5)

In (1.5),ψ is the hydraulic pressure head,Θ(·) is the given parametrization of the water content, K(·) is the given hydraulic
conductivity and z denotes the height against the gravity direction. The applicability and value of the mixed finite element
method (MFEM) and its hybrid variant (MHFEM) for solving the systems (1.1)–(1.5), respectively, have been demonstrated
in a wide class of works; cf. [2–10] and the references therein. Appreciable advantages of mixed finite element methods are
their local mass conservation property (cf. [11,12]) and the fact that they provide an explicit flux approximation as part of
the formulation itself which is of particular importance for coupled flow and transport processes as, for instance, given by
the set of Eqs. (1.1)–(1.5), where the Darcy flow field Q of the transport problems (1.1) is calculated from Richards’ equation
(1.5). While the discretization in space involves a significant set of complexities and challenges, temporal approximations
for (highly) transient processes in porous media have received relatively little interest (cf., e.g., [3,7,8,13]) and have been
limited to traditional non-adaptive first and second order methods. Rigorous studies of higher order time discretizations
are still missing in this field of application even though multiscale phenomena in the time evolution and strongly time
dependent processes are often present, for instance, if complex chemical reaction mechanisms arise in Eq. (1.1), such that
from the point of view of accuracy of numerical predictions the application of higher order time discretization schemes is
recommendable and useful.

The Galerkin method is a known approach to solve time dependent problems; cf. e.g., [14–18]. So far, this variational
approachhas rarely beenused in practice despite of its significant advantages like a uniformvariational approach for stability
and error analyses, the natural construction of higher order methods, the applicability of goal-oriented error control [19]
based on the dual weighted residual approach and the applicability of adaptive finite element techniques for changing
the polynomial degree as well as the length of the time intervals. One reason for this might be the higher algorithmic
complexity of solving the resulting algebraic systems of equations. Recently, higher order Galerkin time stepping schemes of
variational type have been developed and studied for the heat equation [17,20], the nonstationary Stokes and Navier–Stokes
equations [15,21,22] and wave problems [16,23,24]. In simulations for benchmarking configurations the efficiency and
accuracy of continuous Galerkin–Petrov and discontinuous Galerkin time discretizations were demonstrated [15,16,20–22,
24–26].

Here, we introduce two families of continuous and discontinuous variational time discretization schemes that are
combined with mixed finite element approximations of the spatial variables. The class of continuous approximations of
the time variable is characterized by a Galerkin–Petrov type approach with piecewise polynomials of order r and, therefore,
is referred to as the cGP(r) method. These schemes belong to the classes of A-stablemethods [17]. This approach has already
been studied in [14] where error estimates have been proved and superconvergence results have been observed. Further
error estimates have been provided in [17,26]. The discontinuous variational approximation of the time variable results in
a discontinuous Galerkin method with piecewise polynomials of order r . We refer to this approach as the dG(r) method.
The resulting numerical schemes are known to belong to the class of strongly A-stable methods [26,27]. Error estimates for
the semi-discretization in time of evolution equations of parabolic type are provided in [18]. For the mixed approximation
in space we use the Raviart–Thomas family of inf–sup stable pairs of finite elements on quadrilateral and hexahedral
elements. The fully discrete approximation schemes are developed by means of a Rothe type approach by discretizing the
partial differential equation first in time and then in space. The schemes are studied numerically for a prototype diffusion
model only. Their application tomore general transport problems, for instance to convection–diffusion–reactionmodels and
systems of equations, is from the algorithmic point of view straightforward. In a forthcoming work [28], an error analysis is
presented for the classes of discretization schemes that are considered here. This numerical analysis is currently limited to
problems with self-adjoint differential operators. An extension to more general problems is still an ongoing work.

In this work, the solution process of the arising linear systems of equations is described carefully, since this step has
shown to be an essential issue in the application of our variational time discretization schemes. This is done for the cGP(2)
and dG(1) methods, that are used in this work for the numerical convergence studies and further numerical experiments.
The extension of the solution strategy and the construction of efficient preconditioners for still higher order temporal
approximations is still an ongoingwork. In contrast to formerworks [3,4,29,30], themixed finite element approach is applied
here in a non-hybrid framework and the linear systems of equations are solved by Schur complement techniques alongwith
nested preconditioned conjugate gradient iterations. This is done due to the experience made by one of the authors with
applying hybrid mixed finite element methods to nonlinear problems and coupled systems of equations and the resulting
high algorithmic complexity. In this work, to solve the linear systems of equations, the degrees of freedom of the vector-
valued variable are eliminated first. In the resulting reduced system of the equations for the cGP(2) and dG(1) approaches,
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