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a b s t r a c t

We consider a two-stage numerical procedure for imaging of objects buried in dry sand
using time-dependent backscattering experimental radar measurements. These measure-
ments are generated by a single point source of electric pulses and are collected using a
microwave scattering facility which was built at the University of North Carolina at Char-
lotte. Our imaging problem is formulated as the inverse problem of the reconstruction of
the spatially distributed dielectric constant εr (x) , x ∈ R3, which is an unknown coeffi-
cient in Maxwell’s equations.

On the first stage the globally convergent method of Beilina and Klibanov (2012) is ap-
plied to get a good first approximation for the exact solution. Results of this stage were
presented in Thành et al. (2014). On the second stage the locally convergent adaptive fi-
nite element method of Beilina (2011) is applied to refine the solution obtained on the first
stage. The two-stage numerical procedure results in accurate imaging of all three compo-
nents of interest of targets: shapes, locations and refractive indices. In this paper we briefly
describe methods and present new reconstruction results for both stages.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the problem of reconstruction of refractive indices, shapes and locations of buried objects in
the dry sand from backscattering time-dependent experimental data using the two-stage numerical procedure presented
in [1–4]. Our problem is a coefficient inverse problem (CIP) for Maxwell’s equations in three dimensions. Experimental data
were collected using a microwave scattering facility which was built at the University of North Carolina at Charlotte, USA.
Our experimental data were collected using a single location of the source. The backscattered signal wasmeasured on a part
of a plane. Our potential applications are in imaging of explosives, such as land mines and improvised explosive devices.
This work is a continuation of our recent works on this topic, where we have treated a much simpler case of experimental
data for targets placed in air [3,5,6].
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The two-stage numerical proceduremeans that we combine two differentmethods to solve our CIP. On the first stage the
globally convergent numerical method of [2] is applied in order to obtain a good first approximation for the exact solution
without any a priori knowledge of a small neighborhood of this solution, see Section 2.9 of [2] aswell as [7] for global conver-
gence theorems.We presented results of reconstruction of the first stage in our publications [5,6] for objects placed in air. In
our recent study [8] we presented reconstructions of twenty five (25) objects. This study has demonstrated that the method
of [2] works well in estimating the dielectric constants (equivalently, refractive indices) and locations of buried objects.

It was proved in [9] that a minimizer of the Tikhonov functional is indeed closer to the exact solution than the first guess
for this solution. Thus, itmakes sense to apply the Tikhonov functional in order to refine the solutionwhichwehave obtained
on the first stage of our two-stage numerical procedure. To do this, the locally convergent adaptive finite element method
of [10] (adaptivity) is applied on the second stage. The adaptivity uses the solution of the first stage as the starting point
in the minimization of a Tikhonov functional in order to obtain better approximations of refractive indices and shapes of
objects on the adaptively refined meshes. It was shown in [3] that the adaptivity helps to accurately image simultaneously
all three components of interest for targets placed in the air: refractive indices, shapes and locations.

Compared to the case of imaging of targets placed in air (see [3,5,6]), there are threemain difficulties in imaging of buried
targets: (i) the signals of targets are much weaker than those when the targets are in air, (ii) these signals may overlap with
the reflection from the ground’s surface, which makes them difficult to distinguish, and (iii) the reflection from the grounds
surfacemay dominate the target’s signals after the Laplace transform since the kernel of this transform decays exponentially
with respect to time. We have handled this difficulty in [8] via a new data preprocessing procedure. This procedure results
in preprocessed data, which are used as the input for our globally convergent algorithm, i.e. the input for the first stage of
our method.

It is notable that we have experimentally observed a rare superresolution phenomenon and have numerically recon-
structed the corresponding image, see Figs. 4(d) and 9. The resolution limit which follows from the Born approximation, i.e.
the diffraction limit, is λ/2, where λ is the wavelength of the signal. In our experimental device λ = 4.5 centimeters (cm).
We have resolved two targets at the distance of 1 cm = λ/4.5 between their surfaces. At the same time, the backscattering
signalwasmeasured at the distance of about 80 cm ≈ 18wavelengths off the targets, i.e. in the far field zone. Itwas shown in,
for instance [11], that the superresolution can occur because of nonlinear scattering, and our algorithm is nonlinear, includ-
ing the step of extraction of the target’s signal in our data preprocessing procedure [8]. Experimentally the superresolution
phenomenon was demonstrated in [12]. We also refer to the recent work [13] where the superresolution is discussed.

An outline of this paper is as follows. In Section 2 we briefly describe the globally convergent method. In Section 3 we
present the forward, inverse, and adjoint problems as well as the Tikhonov functional for the second stage. In Section 4 we
describe the finite elementmethod used in computations and in Section 5we investigate general framework for a posteriori
error estimation for CIPs. In Section 6 we describe the mesh refinement recommendation and the adaptive algorithm. In
Section 7 we present results of our computations.

2. The first stage

In this section we state the forward and inverse problems which we consider on the first stage. We also briefly outline
the globally convergent method of [2] and present the algorithm used in computations of the first stage.

2.1. Forward and inverse problems

LetΩ ⊂ R3 be a convex bounded domainwith the boundary ∂Ω ∈ C3. Denote the spatial coordinates by x = (x, y, z) ∈

R3. Let Ck+α be Hölder spaces, where k ≥ 0 is an integer andα ∈ (0, 1). We consider the propagation of the electromagnetic
wave in R3 generated by an incident plane wave. On the first stage wemodel the wave propagation by the following Cauchy
problem for the scalar wave equation

εr(x)
∂2u
∂t2

(x, t)−1u(x, t) = δ(z − z0)f (t), (x, t) ∈ R3
× (0, ∞), (1)

u(x, 0) = 0,
∂u
∂t
(x, 0) = 0, x ∈ R3. (2)

Here f (t) ≢ 0 is the time-dependent waveform of the incident plane wave generated at the plane {z = z0} and propagating
along the z-axis, and u is the total wave.

Let the function E (x, t) = (E1, E2, E3) (x, t) be the electric field. In our experiments the single non-zero component
of the incident electric field is E2 and we measure the backscattering function E2, which is the voltage. Our mathematical
model of the first stage uses only the single equation (1) with u = E2 instead of the full Maxwell’s system. Such approxi-
mation is reasonable, since it was shown numerically in [14] that the component E2 of the electric field E dominates two
other components in the case which we consider. Also, see [2] where a similar scalar wave equation was used to work with
transmitted experimental data.

The function εr(x) in (1) represents the spatially distributed relative dielectric constant, i.e. the dielectric constant. It is
known that ε(x) = εr(x)ε0, where ε(x) is the absolute dielectric permittivity of the material and ε0 is the dielectric permit-
tivity of vacuum. Both ε(x) and ε0 are measured in Farad/meter. Thus, εr(x) is dimensionless. We assume that εr is unknown
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