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a b s t r a c t

A three-scale approach for textile models was given in [5]: a one-dimensional fiber model
and a room model, with a meso-level in between, which is the yarn scale. To analyze
and simplify the model, its characteristic times are investigated here. At these times
the fiber and yarn model and the yarn and room model, respectively, tend to reach a
partial equilibrium concentration. The identification of these characteristic times is key to
reducing the model to its variously scaled components when simplifying it.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We focus on the diffusion of a substance to the outer boundary of textiles. The fibers used to construct this fabric are
coated with a polymer solution of an active ingredient (AI), e.g. an insect repellent, a perfume or a healing substance. This
substance can easily be replaced by other volatiles. The goal is to investigate how much of the AI has to be present on the
textile fiber and which polymer substance to use to coat the fiber so that the concentration at the outer boundary of the
textile stays high enough for as long as required to be effective (e.g. repel or even kill mosquitoes, spread a noticeable odor
for humans, have a healing effect. . . ).

The application in mind has the purpose to track the diffusion of an active component released by the fibers of an open
textile structure, like a woven scrim, e.g. a gauze bandage. Models and algorithms for this application were based on [1–4]
and discussed in [5,6] where a meso-level model that describes the release of the active component in the yarn cross-
section is included in between the standard fiber model and the roommodel. Upscaling from one level to another is done by
volume averaging or overlapping domain decomposition (future work). Implementation was done in the C language using
lsoda, [7].

2. Characteristic times for the three-level diffusion

The governing system of equations of the complete three-level model is
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Fig. 1. Log–log plot of the concentrations in function of time for the data (49).

with a homogeneous Neumann BC at the left boundaries and an evaporation flux at the right boundaries for the fiber and
yarn model (1)(a) and (b):
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For the roommodel (1)(c) a homogeneous Neumann BC is present at the right boundary and at the left boundary there exists
an evaporation flux coming from the concentration in the yarn evaporating to the room:
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In the above system of Eqs. (1) the subscripts f , y and r stand for a quantity in the fiber, yarn and room respectively, C
represents the concentration of the AI, D is the diffusion coefficient, v is the evaporation speed and αyr is a constant of
proportion for the evaporation from yarn to room. The constants τ and ϵ are the tortuosity and porosity of the textile
used, respectively. The term Γin in (1)(b) is the volume averaged condensation/evaporation rate and is calculated as
αfyvf (Cf (ρmax) − Cy(r)) with αfy the surface/volume ratio of the fiber.

At certain points in time equilibrium is essentially reached between the threemodels. Plotting the logarithmic concentra-
tion against the logarithmic time scale (Fig. 1) shows that, for standard parameters, after a rather short time (approximately
5 s) the yarn and room concentrations coincide, the fiber and yarn concentrations coincide at 100 s and after approximately
1 × 106 s all concentrations reach the same value.

As an upscaling method volume averaging is used, the averaged outcome of one model serves as boundary conditions
for the other.

These moments in time where equilibria are reached correspond with the systems’ characteristic times. These are the
time scales τ for a particle to travel over a distance x and on average these are given by τ d

≈ x2/D for diffusion and τ e
= x/v

for evaporation.
As a first estimation of these times one may calculate them by this rule of thumb for each of the levels as
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where vfiya is the evaporation speed for the AI from the fiber surface to the yarn gaps, vyaro is the evaporation speed for the
AI from the yarn surface to the room, ∆ρ and ∆r are the thickness of the fiber and yarn cross-section, and Df and Dy are the
respective diffusion coefficients of the first two levels.

A more precise way to calculate these characteristic times uses the Laplace transform of the flux. At interesting points
of the system we interpret the diffusive flux F (x, t) as the probability distribution function of the times T when a particle
passes by position x. The moment-generating function is then related to the Laplace transform of the flux:

Mx(−s) = Ex(e−sT ) =
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e−stF (x, t)dt = L[F (x, t)](s), (6)
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