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a b s t r a c t

Local instability index of unstable solutions to single partial differential equations (PDEs)
by a local minimax method (LMMM) was established in Zhou (2005). It is known that
the local min-orthogonal method (LMOM) which was first proposed in Zhou (2004) and
then further developed in Chen et al. (2008) can find more general unstable solutions to
both single PDEs and cooperative elliptic systems. This paper is to carry out instability
analysis of unstable solutions by LMOM, to which an infinite-dimensional functional space
can be decomposed as a direct sum of a finite-dimensional subspace and its orthogonal
complement. A Morse index approach is developed to show that with LMOM, instability
behavior of a solution in such infinite-dimensional complement subspace can be totally
determined. Usual instability analysis in an entire space is then reduced to analysis in its
finite-dimensional subspace, for which a correspondingmatrix decomposition is proposed
to analyze a solution’s instability behavior. Estimates of Morse index are also established.
Finally, numerical examples of both 2- and 3-component cooperative systems arising in
nonlinear optics are carried out for spatial vector solitons, whose local instabilities are
numerically confirmed by the new estimates. Certain important properties of the examples
are also verified or presented.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multiple solution phenomena appear inmany applications; e.g., electronically (or laser) induced, highly/multiply excited
states (corresponding to saddle points of certain functionals mathematically) can now be observed or obtained [1–7] in
many fields such as quantummechanics, condensed matter physics, dynamics of biomolecules, and nonlinear optics. Those
highly excited states are usually very unstable and tend to decay via different manners into lower-lying excited ones or
the ground states under small perturbations. Meanwhile, all those excited states enjoy a wide variety of configurations and
maneuverabilities, whichmay lead to various applications in future.With newatomic, optical or synchrotronic technologies,
scientists now are able to successfully reach or trap them and search for their potential applications [8,2,9–14,7]. These
new technologies and advanced studies are changing people’s traditional views of unstable solutions and starting to draw
more and more attention from both scientists and engineers. As a result, there is a growing need to develop more efficient
and reliable numerical methods for finding those multiple excited states and for analyzing their instability as well. A local
minimax method (LMMM) [15–17] and a local min-orthogonal method (LMOM) [18,19] were developed to numerically
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find multiple unstable solutions for several nonlinear PDEs and PDE systems. Instability analysis of saddle points including
estimates of their Morse indices was established in [20,21] for single PDEs under a local minimax characterization. On the
other hand, analogous analysis has not been implemented for PDE systems under a local min-orthogonal characterization.
The purpose of this paper is to carry out local instability analysis of multiple co-existing solutions to cooperative elliptic
systems. Compared with their counterparts in the single equation case, systems usually carry a much richer complexity and
a more intriguing dynamics and can be classified in many different ways, see also [18,22].

Consider the following cooperative system
−1u = Fu(x, u, v), x ∈ Ω,
−1v = Fv(x, u, v), x ∈ Ω,
u = v = 0, x ∈ ∂Ω

(1.1)

where Ω is a bounded open domain in RN (N ≥ 1), F : Ω × R2
→ R is of class C2 in the variables (u, v) such that

(A1) |∇F(x, z)| ≤ C(1+|z|p−1), ∀z ∈ R2, a.e. x ∈ Ω , for some constants C > 0 and 2 < p < 2N
N−2 ifN ≥ 3 or 2 < p < +∞

if N = 1, 2 (subcritical growth [23,24]),
(A2) Fu(x, 0, v) ≡ Fv(x, u, 0) ≡ 0 (homogeneity),
(A3) when |(u, v)| → 0, F(x, u, v) =

α
2 u

2
+

β

2 v2
+ o(|(u, v)|2) for some constants α, β s.t. max{α, β} < σ1, the first

eigenvalue of −∆ in H1
0 (Ω).

Then, weak solutions to (1.1) correspond to critical points of the variational functional

J(u, v) =


Ω

1
2
(|∇u|2 + |∇v|

2) − F(x, u, v)

dx. (1.2)

It is easy to see that (0, 0) is a local minimum of J under conditions (A2) and (A3). Recall that for a functional J ∈ C1(H, R)
in a Hilbert space H , a point w∗

∈ H is called a critical point of J if J ′(w∗) = 0, where J ′ denotes the first Frechet derivative
of J . A critical point w∗ of J is called nondegenerate if the second Frechet derivative J ′′(w∗) is not singular; otherwise, w∗

is called degenerate. The most studied critical points are the local extrema. Classical calculus of variations and traditional
numerical (variational) methods focus on finding such stable solutions. Critical points that are not local extrema are called
saddle points; they appear as unstable equilibria or transient excited states in physical systems.

Multicomponent solitons have recently witnessed [2–4,9–11] a renewed interest in the areas of condensed matter
physics, dynamics of biomolecules, nonlinear optics, etc. For example, after a number of experimental observations of self-
guided light beams in various types of nonlinear bulk media (e.g., photorefractive crystals, photonic crystal fibers) were
reported, the study of optical spatial solitons and their interactions have become an active research area in nonlinear optics,
see [2–4,25,5,10,11]. As mentioned in [2], ‘‘Optical spatial solitons are not only interesting in themselves, but also because
they exhibit many fascinating features such as particle-like interactions during collisions. . . . The general ideas behind mul-
ticomponent vector solitons proved invaluable for later developments’’. In nonlinear optics, it has been shown that several
light beams can be combined to produce multicomponent self-trapped states, also called spatial vector solitons. Physi-
cally, these spatial vector solitons are localized ‘‘particlelike’’ nonlinear objects, i.e., self-trapped, self-guided light beams.
Mathematically, they are standing (stationary) solitary wave solutions of certain nonlinear Schrödinger systems [3,4,25,5],
see system (4.1) in Section 4, for example; in particular, when the systems are variational, they correspond to co-existing
saddle points of certain functionals.

Existence and stability are always among themain concerns in nonlinear PDEs or PDE systems. Recently, existence ofmul-
tiple solutions (including vector solitons) to several classes of semilinear and asymptotically linear elliptic systems has been
confirmed experimentally (see [3,4,25,5] and the references therein) and/or established mathematically [26–28,24,29,30].
On the stability of vector solitons, ‘‘so far, numericalmethods have been proved to be the only available tool for analyzing the
mutually trapped states in the nonlinear regime, especially solitonswith no radial symmetry (e.g., dipole ormultipole vector
solitons)’’ [25]. It has been observed that the dipole-mode vector solitons are much more stable than any other mode vec-
tor soliton including the vortex-mode vector soliton. They are ‘‘stable enough for experimental observation, . . . , extremely
robust, have a typical lifetime of several hundred diffraction lengths and survive a wide range of perturbations’’ [5]. On the
other hand, from a mathematical point of view, all those vector solitons are saddle points and thus unstable. One objective
of this paper is to try to mathematically measure local instabilities of those unstable solutions.

For a critical point u∗ of J in H , assume J ′′(u∗) : H → H is a self-adjoint Fredholm operator. According to the spectral
theory, H has an orthogonal spectral decomposition

H = H−
⊕ H0

⊕ H+ (1.3)

where H−,H0,H+ are respectively the maximum negative definite, the null and the maximum positive definite subspaces
of J ′′(u∗) in H with dim(H0) < ∞, and are invariant under J ′′(u∗). By the Morse theory, the Morse index (MI) of u∗ is
MI(u∗) = dim(H−). Evidently, a nondegenerate critical point u∗ with MI(u∗) = 0 is a local minimum of J and hence
is a stable solution; while a critical point u∗ of J with MI(u∗) > 0 is an unstable solution. When u∗ is nondegenerate,
i.e., H0

= {0}, the value MI(u∗) can be used [31] to measure local instabilities of u∗. In other words, it can be used as a
local instability index, i.e., the dimension of a maximum subspace of vectors in H along which the functional J decreases
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