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a b s t r a c t

In this paper, based on GCRS algorithm in Zhang and Zhao (2010) and the ideas in Gu et al.
(2007), we present an improved generalized conjugate residual squared (IGCRS) algorithm
that is designed for distributed parallel environments. The new improved algorithm
reduces two global synchronization points to one by changing the computation sequence
in the GCRS algorithm in such a way that all inner products per iteration are independent
so that communication time required for inner products can be overlapped with useful
computation. Theoretical analysis and numerical comparison of isoefficiency analysis show
that the IGCRS method has better parallelism and scalability than the GCRS method, and
the parallel performance can be improved by a factor of about 2. Finally, some numerical
experiments clearly show that the IGCRS method can achieve better parallel performance
with a higher scalability than the GCRS method and the improvement percentage of
communication is up to 52.19% averagely, which meets our theoretical analysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of fundamental tasks of numerical computation is to solve linear systems. These systems arise frequently in scientific
computing, for example, from finite difference or finite element discretization of partial differential equations, as interme-
diate steps in finding the solution of nonlinear problems or as subproblems in linear and nonlinear programming. Usually,
these systems are large, sparse and nonsymmetric and solved by iterative methods [1].

Among the iterativemethods for large sparse systems, the Krylov subspacemethods are themost powerful. For example,
conjugate gradient (CG)method for solving symmetric positive definite linear systems, theGMRESmethod, BiCGmethod [1],
QMR method [2], BiCGStab method [3] and BiCR [4], CRS [5,6], GCRS [7] methods for solving nonsymmetric linear systems
and so on. However, the Krylov subspace methods enforce bottleneck, i.e., the global communication induced by inner
product computations, when used in large scale parallel computing.
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The basic time-consuming computational kernels of all the Krylov subspace methods are usually [1]: inner products,
vector updates and matrix–vector multiplications. Vector updates are naturally parallel and, for large sparse matrices,
matrix–vector multiplications can be implemented with communication between only nearby processors. The bottleneck is
usually due to inner products enforcing global communication. These global communication costs become relatively more
and more important when the number of parallel processors is increased and thus they have the potential to affect the
scalability of the algorithm in a negativeway. The detailed discussion on the communication problemondistributedmemory
systems can be found in [8].

Three remedies can be used to solve the bottleneck leading to performance degeneration. The first is to eliminate data
dependency, resulting several inner products can be computed and passed at the same time. The second is reconstructing
algorithm, resulting communication and computation can be overlapped efficiently. The last is replacement of computation
involving global communications by another computation without global communications. Of course, the three strategies
can be applied in combination. The remedy, used in this paper, belongs to the first, i.e., reducing the global communication
times or number of global synchronization points.

Bücker et al. [9] and Yang et al. [10] proposed a new parallel quasi-minimal residual (QMR)method based on the coupled
two-term recurrences Lanczos process. Sturler et al. [8] showed how to reduce affection of the global communication in
GMRES(m) and CG methods. Yang et al. [11–13] propose the improved CGS, BiCG and BiCGStab methods respectively. Liu
et al. gave an improved CR algorithm [14]. Liu and Gu et al. [15] proposed the parallel QMRCGSTABmethod. Zhang et al. [5,6]
proposed the improved conjugate residual squared method. All of these methods are based on the first two strategies men-
tioned in the former paragraph. Gu, Liu andMo [16] proposed a CG-typemethodwithout global inner products, i.e., multiple
search direction conjugate gradient (MSD-CG) method. Based on domain discretion, MSD-CG method replaced the inner
products computation in CGmethod by small size linear systems. Therefore, it eliminates global inner products completely,
and belongs to the last remedy.

In this paper, based onGCRS algorithm for large sparse nonsymmetric linear systems in Zhang et al. [7], we present an im-
proved generalized conjugate residual squared (IGCRS) algorithm, which is designed for distributed parallel environments.
The improved GCRS (IGCRS) method is reorganized without changing the numerical stability and all inner products per it-
eration are independent (only one single global synchronization point), and subsequently communication time required for
inner products can be overlapped efficiently with computation time. The cost is only a little increased computation. Theo-
retical analysis and numerical comparison of isoefficiency analysis show that the IGCRS method has better parallelism and
scalability than the GCRS method and the parallel performance can be improved by a factor of about 2.

This paper is organized as follows. First of all, we give the improved GCRS method. Then, theoretical analysis and
isoefficiency analysis of two methods are presented in Sections 3 and 4. Numerical experiments are presented in Section 5.
Finally, we make some concluding remarks in Section 6.

2. The improved GCRS algorithm

Consider solving a large sparse nonsymmetric linear system

Ax = b, (1)

on a parallel distributed memory machine, where A ∈ RN×N , x, b ∈ RN . Denote x0 any initial guess for the solution and r0 =

b − Ax0 the initial residual. Then, Zhang et al. [7] proposed the generalized CRS algorithms by using products of two nearby
BiCR polynomials and formal orthogonal polynomial. TheGCRS andGCRS2 algorithms described in [7] arewritten as follows:

Algorithm 1 (Generalized Conjugate Residual Squared Method) (GCRS) (see [7])
1) Compute r0 = b − Ax0, r∗

0 is arbitrary
Set p0 = u0 = t0 = r0

2) For n = 0, 1, . . ., until convergence. Do:

3) αn =
(rn,AT r∗0 )

(Apn,AT r∗0 )

4) choose α̃n
5) sn = tn − αnApn
6) qn = un − α̃nApn
7) βn = −

(Asn,AT r∗0 )

(Apn,AT r∗0 )

8) choose β̃n
9) un+1 = rn+1 + βnqn
10) tn+1 = rn+1 + β̃nsn
11) pn+1 = tn+1 + βn(qn + β̃npn)
12) rn+1 = rn − A(αnun + α̃nsn)
13) xn+1 = xn + αnun + α̃nsn
14) EndDo
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