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a b s t r a c t

Galerkin discretizations of a class of parametric and random parabolic partial differential
equations (PDEs) are considered. The parabolic PDEs are assumed to depend on a vector
y = (y1, y2, . . .) of possibly countably many parameters yj which are assumed to take
values in [−1, 1]. Well-posedness of weak formulations of these parametric equations in
suitable Bochner spaces is established. Adaptive Galerkin discretizations of the equation
based on a tensor product of a generalized polynomial chaos in the parameter domain
Γ = [−1, 1]N, and of suitable wavelet bases in the time interval I = [0, T ] and the spatial
domain D ⊂ Rd are proposed and their optimality is established.

© 2013 Elsevier B.V. All rights reserved.

0. Introduction

In recent years, based on the pioneering works [1,2], and the subsequent refinements [3–7], a rigorous theory of optimal
(in the sense that convergence rateswhich are afforded by bestN-termapproximations fromabiorthogonal expansion of the
unknown solution in some a priori given Riesz basis are achieved) adaptive Galerkin approximation methods has emerged.
After initial applications to linear elliptic partial differential equations in [1,2] using isotropically supported multiresolution
bases, extensions to integro-differential operators have been considered in [3,4], first applications to elliptic multiscale
problems using anisotropic tensor product Riesz bases have been considered in [5,6] and, subsequently, to the space–time
compressive discretization of linear parabolic (integro)differential equations have been considered in [7].
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In recent years, in particular in connection with the numerical solution of partial differential equations with random
inputs, for example with random coefficients given by Karhunen–Loève expansions, initial boundary value problems of
parametric, deterministic partial differential operators which depend on a sequence of countably many parameters have
been considered. Various discretization approaches, for example collocation and Monte Carlo sampling techniques, have
been considered (see, e.g., [8] and the references therein).

While affording convenient implementation, the analysis of sampling methods currently leaves open the question of
optimality. Here, the situation for the so-called stochastic Galerkin discretizations is quite different: since the discretization
consists in a mean-square projection onto a polynomial chaos, i.e. onto a finite span from a countable ensemble of
tensorized orthogonal polynomials, in principle techniques for establishing optimality of Galerkin projection methods for
the approximate solution of operator equations can be brought to bear. This programme has been implemented in [9] and
the references therein for parametric operator equations.

In the present paper, we adapt these techniques to prove optimality of an adaptive Galerkin scheme for linear, parametric
and parabolic equations. Here, we use a Legendre generalized polynomial chaos in the parameter space, and a space–time
tensor productwavelet basis thatwas shown to lead to an optimal Galerkin approximation for the non-parametric, parabolic
initial boundary problems in [7]. Based on the approach and the tensorized space–time Riesz bases for the Bochner space
in these references, we develop in the present paper a family of adaptive Galerkin discretizations which are based on
tensorizing the generalized polynomial chaos and the space–time tensor product wavelet bases, resulting in discretization
schemes which are simultaneously adaptive in space–time and in the parameter space. We establish here optimality of the
resulting algorithm, which implies that the best N-term approximation rates which are afforded by the exact solution from
the tensorized basis are, indeed, realized by the sequence of finitely supported approximations generated by the proposed
adaptive Galerkin discretization.

The outline of this paper is as follows. In Section 1.1, we present an abstract class of parametric, parabolic problemswhich
may depend on a countable number of parameters. We elaborate on the specific class of affine parameter dependence of the
parametric operator equations.

In Section 2,we introduce a space–timeweak formulationwhich also includes aweak formof the parameter dependence.
Sections 3 and 4 introduce the requirement for polynomial chaos type Riesz bases in the parameter domain, and for the

multiresolution (wavelet) Riesz bases on the space and time domains.
Section 5 introduces an equivalent bi-finite matrix equation which, in particular, allows for suitable compressibility

results.
Section 6presents elements of the general adaptiveGalerkin framework, based on the general Refs. [1,2,4]where adaptive

wavelet methods were developed in the context of wavelet discretizations of elliptic operator equations, to the extent
required by the ensuing developments.

Section 7 recapitulates from [9] general results on the optimality of adaptive Galerkin approximations of deterministic
operator equations. Finally, Section 8 contains statements andproofs of themain result of the present paper, the optimality of
the proposed adaptiveGalerkin approximations in space, time andparameter domains by sparse, tensorized bases consisting
of tensor products of Riesz bases Θ, Σ and of P .

1. Random and parametric parabolic equations

1.1. Abstract setting

Let V and H be real or complex separable Hilbert spaces. We denote by V ∗ the dual space of V , which consists of all
bounded antilinear functionals on V . Assuming a dense embedding V ↩→ H , we obtain a Gelfand triple V ↩→ H ↩→ V ∗,
where H is canonically identified with its dual.

We shall consider equations in V that depend on a temporal variable t ∈ I := [0, T ] and also on a parameter sequence
y ∈ Γ := [−1, 1]N. On Γ , we define a probability measure

π =


m∈N

πm, (1.1)

where each πm is assumed to be a probability measure on [−1, 1] with the Borel σ -algebra. Although the product structure
of the domain Γ and the measure π is irrelevant for the abstract problem formulation, it is pivotal to the subsequent
construction of countable orthonormal (with respect to π) bases on the parameter domain in Section 3.

For a.e. t ∈ I and π-a.e. y ∈ Γ , we denote by A(t, y; ·, ·) a sesquilinear form on V × V such that for any v,w ∈ V , the
map (t, y) → A(t, y; v,w) is Borel-measurable on I × Γ , and such that for a.e. t and y

|A(t, y; v,w)| ≤ cmax∥v∥V∥w∥V ∀v,w ∈ V , (1.2)

ℜA(t, y; v, v)+ c0∥v∥2
H ≥ cmin∥v∥

2
V ∀v ∈ V , (1.3)

with fixed constants cmax > 0, cmin > 0 and c0 ≥ 0. For any v ∈ V , the antilinear functional A(t, y; v, ·) is an element of V ∗.
This allows us to interpret A(t, y) as a bounded linear map from V to V ∗ for a.e. t and for π-a.e. y ∈ Γ .



Download English Version:

https://daneshyari.com/en/article/6422580

Download Persian Version:

https://daneshyari.com/article/6422580

Daneshyari.com

https://daneshyari.com/en/article/6422580
https://daneshyari.com/article/6422580
https://daneshyari.com

