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a b s t r a c t

We propose a new type of C1-rational cubic spline Fractal Interpolation Function (FIF)
for convexity preserving univariate interpolation. The associated Iterated Function System
(IFS) involves rational functions of the form Pn(x)

Qn(x) , where Pn(x) are cubic polynomials
determined through the Hermite interpolation conditions of the FIF and Qn(x) are
preassigned quadratic polynomials with two shape parameters. The rational cubic spline
FIF converges to the original function Φ as rapidly as the rth power of the mesh norm
approaches to zero, provided Φ(r) is continuous for r = 1 or 2 and certain mild conditions
on the scaling factors are imposed. Furthermore, suitable values for the rational IFS
parameters are identified so that the property of convexity carries from the data set to
the rational cubic FIFs. In contrast to the classical non-recursive convexity preserving
interpolation schemes, the present fractal scheme is well suited for the approximation of
a convex function Φ whose derivative is continuous but has varying irregularity.

© 2013 Elsevier B.V. All rights reserved.

1. Background and preliminaries

Suppose a set of data points D = {(xn, yn) ∈ I × R : n = 1, 2, . . . ,N} is given, where x1 < x2 < · · · < xN and
I = [x1, xN ]. The problem of interpolation in numerical analysis and approximation theory deals with the construction of
a continuous function S : I → R satisfying S(xn) = yn for n = 1, 2, . . . ,N . The interpolants produced by these traditional
methods are smooth, sometimes infinitely (piecewise) differentiable. As a consequence, these methods become unsuitable
for interpolating a highly irregular data or approximating a function whose derivative of a certain order is irregular in a
dense subset of the interpolation interval. This served as a motivation for the development of a new interpolation technique
using fractal methodology.

The theory of fractals and fractal interpolation functions has evolved beyond its mathematical framework and has
become a powerful tool in the applied sciences as well as engineering [1–3]. The realm of applications of fractals and FIFs
includes but not limited to geometric design [4], structural mechanics [5], physics and chemistry [6,7], signal processing and
decoding [8,9], and applied wavelet theory [10]. The reason for the vast applications of FIFs is attributable to their ability to
produce complicated mathematical structures with a simple recursive procedure. A FIF is constructed as a fixed point of the
Read–Bajraktarević operator defined on a suitable function space. In what follows, we shall recall the precise definition of a
FIF and its construction proposed by Barnsley [2].
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Set In = [xn, xn+1] for n ∈ J = {1, 2, . . . ,N − 1}. Let Ln : I → In, n ∈ J , be contraction homeomorphisms such that:

Ln(x1) = xn, Ln(xN) = xn+1. (1.1)

Let −1 < αn < 1, n ∈ J . Further, let K = I × [a, b] for some −∞ < a < b < +∞, and N − 1 continuous mappings
Fn : K → [a, b] be given satisfying:

Fn(x1, y1) = yn, Fn(xN , yN) = yn+1, n ∈ J, (1.2)
|Fn(x, yl) − Fn(x, ym)| ≤ |αn||yl − ym|, x ∈ I, yl, ym ∈ [a, b].

Define functions wn : K → K , wn(x, y) = (Ln(x), Fn(x, y)) ∀ n ∈ J . Consider the collection I ≡ {K ; wn : n ∈ J}, which
is termed as an IFS. Associated with the collection of functions in I, there is a set valued mapping w from the hyperspace
H(K) of nonempty compact subsets of K into itself. More precisely, w(A) = ∪n∈J wn(A) for A ∈ H(K), where wn(A) =

{wn(a) : a ∈ A}. There exists a metric h, called the Hausdorff metric, which completes H(K). This metric is defined as
h(A, B) = max{maxx∈A miny∈B d(x, y),maxy∈B minx∈A d(y, x)} ∀A, B ∈ H(K). Here d is a metric that is equivalent to
the Euclidean metric on R2 with respect to which each wn is a contraction. It is well known [2] that w is a contraction on
the complete metric space (H(K), h). Consequently, by the Banach Fixed Point Theorem there exists a unique set G such
that G = limn→∞ wn(A0) and w(G) = G, where A0 ∈ H(K) is arbitrary. Here wn denotes the n-fold composition of w,
and the limit is taken in the Hausdorff metric: wn(A0) → G ⇔ h(G, wn(A0)) → 0. Such a set G is called an attractor or a
deterministic fractal. The next proposition relates Gwith a function interpolating the data set.

Proposition 1.1 (Barnsley [1]). The IFS {K ; wn : n ∈ J} defined above admits a unique attractor G. Further, G is the graph of a
continuous function S : I → R which obeys S(xn) = yn for n = 1, 2, . . . ,N.

The function S whose graph is the attractor of an IFS as described in Proposition 1.1 is called a FIF. Now we provide some
excerpts from the proof of the above proposition that yield a functional equation corresponding to the interpolant S.

Let G := {H : I → R | H is continuous,H(x1) = y1 and H(xN) = yN}. Then G endowed with the uniform metric
τ(H,H∗) := max{|H(x) − H∗(x)| : x ∈ I} is a complete metric space. Define the Read–Bajraktarević operator T on (G, τ ) as
follows:

(TH)(x) = Fn

L−1
n (x),H ◦ L−1

n (x)

, x ∈ In, n ∈ J. (1.3)

Due to the conditions on the maps Ln and Fn, n ∈ J , it follows that TH is continuous on I . Furthermore, the map T is a
contraction on themetric space (G, τ ), i.e., τ(TH, TH∗) ≤ |α|∞τ(H,H∗), where |α|∞ := max{|αn| : n ∈ J} < 1. Since (G, τ )
is complete, T possesses a unique fixed point S, i.e., there is S ∈ G such that (TS)(x) = S(x) ∀ x ∈ I . This function S is the FIF
corresponding to the IFS I. Therefore, from (1.3) it follows that S satisfies the functional equation:

S(x) = Fn

L−1
n (x), S ◦ L−1

n (x)

, x ∈ In, n ∈ J. (1.4)

The most extensively studied FIFs so far in the literature stem from the IFS
K ; wn(x, y) ≡


Ln(x) = anx + bn, Fn(x, y) = αny + Rn(x)


: n ∈ J


, (1.5)

where Rn : I → R are suitable continuous functions, generally polynomials, such that the conditions prescribed in (1.2) are
satisfied. The parameter αn is called a scaling factor of the transformationwn, and α = (α1, α2, . . . , αN−1) is the scale vector
of the IFS. The main differences of a FIF with the traditional interpolation techniques consist: (i) in the definition in terms of
a functional equation that implies a self similarity in small scales, (ii) in the constructive way through iterations that is used
to compute the interpolant instead of analytic formulae, (iii) in the presence of free parameters αn that replace the unicity
of the traditional interpolant for a fixed set of interpolation data with unicity of the interpolant for a fixed data set and a
fixed choice of scale vector, and (iv) in the fact that the fractal dimension of a FIF is, in general, non-integer. To obtain the
actual fractal interpolant, one needs to continue the iterations indefinitely. However, a small number of iterations usually
yields a close approximation. Next we recall the following result of Barnsley and Harrington [11] for the construction of an
IFS that generates smooth interpolants corresponding to a finite set of data points.

Proposition 1.2 (Barnsley and Harrington [11]). Let {(xn, yn) : n = 1, 2, . . . ,N} be a given set of data points, where x1 < x2
< · · · < xN . Let Ln(x) = anx + bn, n ∈ J , be the affine functions satisfying (1.1) and Fn(x, y) = αny + Rn(x), n ∈ J , satisfy (1.2).
Suppose that for some integer p ≥ 0, |αn| < apn and Rn ∈ Cp

[x1, xN ], n ∈ J . Let

Fn,k(x, y) =
αny + R(k)

n (x)
akn

, y1,k =
R(k)
1 (x1)

ak1 − α1
, yN,k =

R(k)
N−1(xN)

akN−1 − αN−1
, k = 1, 2, . . . , p.

If Fn−1,k(xN , yN,k) = Fn,k(x1, y1,k) for n = 2, 3, . . . ,N − 1 and k = 1, 2, . . . , p, then the IFS {I × R; (Ln(x), Fn(x, y)), n ∈ J}
determines a FIF S ∈ Cp

[x1, xN ], and S(k) is the FIF determined by {I × R; (Ln(x), Fn,k(x, y)), n ∈ J} for k = 1, 2, . . . , p.
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