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• Formulation of the Lax–Wendroff difference scheme for conservation laws as a finite element method.
• Goal oriented a posteriori error estimate for the Lax–Wendroff finite difference scheme.
• Investigation of accuracy of the computational error estimate.
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a b s t r a c t

In many application domains, the preferred approaches to the numerical solution of
hyperbolic partial differential equations such as conservation laws are formulated as
finite difference schemes. While finite difference schemes are amenable to physical
interpretation, one disadvantage of finite difference formulations is that it is relatively
difficult to derive the so-called goal oriented a posteriori error estimates. A posteriori error
estimates provide a computational approach to numerically compute accurate estimates in
the error in specified quantities computed from a numerical solution.Widely used for finite
element approximations, a posteriori error estimates yield substantial benefits in terms of
quantifying reliability of numerical simulations and efficient adaptive error control.

The chief difficulties in formulating a posteriori error estimates for finite difference
schemes is introducing a variational formulation – and the associated adjoint problem –
and a systematic definition of residual errors. In this paper, we approach this problem
by first deriving an equivalency between a finite element method and the Lax–Wendroff
finite volume method. We then obtain an adjoint based error representation formula
for solutions obtained with this method. Results from linear and nonlinear viscous
conservation laws are given.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we derive a computable, goal-specific a posteriori error estimate for the Lax–Wendroff finite difference
scheme for the viscous nonlinear conservation law in one dimension,

ut + f (u)x = ϵuxx, x ∈ S1, 0 < t ≤ T ,
u(x, 0) = u0(x), x ∈ S1,

(1)
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where ϵ > 0, f : R → R is smooth, and S1 is the one dimensional unit sphere, i.e. we assume periodic boundary conditions.
We also apply the estimate to an example with ϵ = 0, in which case, we also assume f is convex. Periodic boundary
conditions greatly simplifies the presentation since boundary conditions can introduce serious complications for hyperbolic
and convection-dominated problems. Generally, a posteriori error estimates can be extended to include the effects of error
in boundary conditions and pursuing such analysis for hyperbolic equations is an interesting problem.

In contrast to a priori convergence and accuracy analysis, a posteriori error estimate yields an accurate estimate of the
error in informationQ(u) computed from a particular numerical solutionU . The ingredients of the a posteriori error analysis
include variational analysis, adjoint operators, and computable residuals. Computable accurate error estimates are an
important component of reliability, uncertainty quantification, and adaptive error control. Adjoint-based a posteriori error
estimation has been developed and implemented widely over the past few decades within the finite element community
[1–4]. Much of the work in a posteriori error estimation has been directed towards elliptic and parabolic problems,
however there is some recent research targeting conservation laws. Barth and Larson, [5–7], considered error estimation
for the discontinuous Galerkin method and certain Godunov methods. Other work, [8–11] has addressed adaptivity and the
necessary error estimation for various conservation laws. All of the studies for conservation laws assume the approximate
solution is obtained by a finite elementmethod e.g., discontinuous Galerkin. This method is well-suited for a posteriori error
estimation, but it is also relatively new.

The first methods developed for hyperbolic problems were finite difference methods. These included methods such as
Lax–Wendroff [12], Godunov [13], MacCormack [14], upwind [15], andmany others[16,17]. See [18,19] for a review of some
of the early finite difference schemes for hyperbolic problems. These methods were developed to deal with hyperbolic
problems, in particular, to capture discontinuities effectively. They were also developed to have low computational cost,
being explicitmethods. Therefore,many large scale codes implement thesemethods [20–22]. Therefore, it is useful to obtain
a posteriori error estimates for solutions obtained by these finite difference methods.

In this paper, we derive an a posteriori error estimate for the Lax–Wendroff scheme. The main ideas of the analysis
can be used to derive estimates for other finite difference schemes, though the specific details would depend on the
particular scheme in question. To derive the estimate, we first rewrite the Lax–Wendroff method as a ‘‘nodally equivalent’’
finite element method. We then perform an adjoint based error analysis for this finite element method, which can then
be interpreted as an estimate for the original difference scheme. The error estimate can be partitioned into a sum of
contributions, each corresponding to specific approximations made in the discretization. This quantification of various
contributions to the error is essential to obtain an accurate estimate and it is also useful for adaptivity, as discussed in
the conclusion. Since this scheme is explicit, we use the work of [23], where error estimation was performed for explicit
time stepping schemes for ordinary differential equations.

The structure of the paper is organized as follows. We recall the derivation of the Lax–Wendroff scheme in Section 2. In
Section 3, we formulate a finite elementmethod that is equivalent to the Lax–Wendroff scheme.We present the a posteriori
error estimate in Section 4. Numerical results for the linear advection and Burgers equations are presented in Section 5.

2. A review of the Lax–Wendroff finite difference scheme

The Lax–Wendroff scheme is an explicit second order difference scheme. As with other simple difference schemes,
simplicity of implementation is an attractive feature. However, the price of higher order approximation is that the
Lax–Wendroff scheme is dispersive, which limits usefulness for problems with shocks. Nonetheless, it is still an extremely
popular method that is embedded in many legacy codes.

We partition the temporal domain by the nodes, 0 = t0 < t1 < · · · < tN−1 < tN = T , and define kn = tn − tn−1, while
the spatial domain is partitioned by the nodes, xM = x0 < x1 < · · · < xM−1 < xM = x0, with the uniform spatial step
h = xi −xi−1. The Lax–Wendroff scheme is originally derived for a pure convection problem, that is (1) with ϵ = 0, based on
a truncated Taylor series expansion. Assuming u(x, t) is a smooth solution of (1) with ϵ = 0, we consider the approximation
of the solution generated by truncating the Taylor series in time:

u(x, t + kn) ≈ u(x, t)+ knut(x, t)+
k2n
2
utt(x, t). (2)

Then, using (1), we replace all temporal derivatives with spatial derivatives,

ut = f (u)x, utt = f (u)xt = f (u)tx = (f ′(u)ut)x = (f ′(u)f (u)x)x.

Approximating the spatial derivatives with centered differences, and using subscripts and superscripts to denote the finite
difference approximation, we obtain the update formula for the Lax–Wendroff method,

un
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for n = 1, . . . ,N and i = 0, . . . ,M − 1, and

un
i = u(xi, tn), f ni = f (u(xi, tn)), f ′n

i+1/2 = f ′(u(xi+1/2, tn)).

It is also common to approximate the propagation speed evaluated at the midpoint by, f ′n
i+1/2 ≈ f ′
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