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a b s t r a c t

The purpose of the paper is to use numerical analysis and optimization tools to suggest
improved therapies to try and cure HIV infection. A HIV model of an ordinary differential
equation,which includes immune response, neutralizing antibodies andmulti-drug effects,
is improved. For a fixed time, two drugs treatment strategies are explored based on Pon-
tryagin’sMaximumPrinciple. Four types of treatments are used, and existence and unique-
ness results for the optimal control fair are established. The optimality system is derived
and then solved numerically using Gradient Projection Method. On the basis of weight fac-
tors for controls, we find a well treatment strategy with steady lower dosage of RTIs and
PIs during the main part of treatment, almost unchanged higher population of uninfected
CD4+T cells and few increase of active virus throughout the duration.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models are often used to study disease spread and have become essential tools to make assumptions,
suggest new experiments or help one explaining easily complex processes. Many important papers investigate dynamic
models of host–drug–virus interactions [1,2]. Most of the models are deterministic prey–predator systems of nonlinear
differential equations. Sometimes stochastic terms are included to address the random behavior of features of the disease
process. Typically, dynamic changes are modeled considering cell numbers progression of CD4+T cells, infected cells and
virus population under drugs effects [2–7]. At the same time, optimal control has received much attention. The main idea
is to use optimization techniques and theories to propose an alternative treatment based on administrating continually
adjustable antiviral drug doses once a proper model is obtained. We refer to [4–7] for studies of the HIV model based on
optimal control that maximizes/minimizes a prescribed objective function.

In 2011, an optimal control problem including immune response and multi-drug effects for HIV multitherapy enhance-
ment
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Ṫ = rT

1 −

T + L + I
Tm


− µTT − (1 − u1)k1VT + s1, (2)

∗ Corresponding author. Tel.: +86 73182255383.
E-mail addresses: ygzhou@csu.edu.cn, ygzhou@mail.csu.edu.cn (Y. Zhou), liang_yiting@sina.cn (Y. Liang), wujh@mathstat.yorku.ca (J. Wu).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.12.007

http://dx.doi.org/10.1016/j.cam.2013.12.007
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2013.12.007&domain=pdf
mailto:ygzhou@csu.edu.cn
mailto:ygzhou@mail.csu.edu.cn
mailto:liang_yiting@sina.cn
mailto:wujh@mathstat.yorku.ca
http://dx.doi.org/10.1016/j.cam.2013.12.007


Y. Zhou et al. / Journal of Computational and Applied Mathematics 263 (2014) 326–337 327

L̇ = ω(1 − u1)k1VT − µT L − k2I, (3)

İ = (1 − ω)(1 − u1)k1VT + k2I − µI I − k3IE, (4)

V̇ = a(1 − u2)I − k1VT − µVV , (5)

Ė = k4ITE − µEE + s2, (6)

T (t0), L(t0), I(t0), V (t0), E(t0) ≥ 0, 0 ≤ u1, u2 ≤ 1

was studied by Orellana [5]. For a fixed time, a two drugs treatment strategy was obtained based on Pontryagin’s Minimum
Principle. Basically, the method studied can be considered as an optimal control one where drug doses are regarded as con-
trol inputs. The quadratic objective function considered takes into account three contributions: the viral load, the transient
evolution of infection and the quantities of drug used. Simulations were carried out using an indirect optimization method.
At each step the differential systemwas solved using the Runge–Kutta five order scheme. Results highlighted that a progres-
sive reduction of Reverse Transcriptase Inhibitor (RTI) drug dose on the one hand alongwith on the other hand a progressive
increase of Protease Inhibitor (PI) one was needed for optimality.

Orellana [5] takes the Cytotoxic T Lymphocytes (CTL) into account, however, ignores the neutralizing antibodies. The
antibodies can combine with the virus such that the virus cannot get into target cells, yet HIV-1 can mutate very quickly, so
the antibodies’ periods of validity is short. The antibodies can protect a host against the infection by HIV-1. The antibodies
can be induced several weeks after infection [8,9]. The facts imply that the neutralizing antibodies may be important in
the early stage of the infection. Because the concentration of antibodies is secreted by effector B cells, we add a term B(t),
which represents the concentration of effector B cells, to the control system. Because the differentiation and proliferation
of B-cells to effector B-cells need the help of CD4+T -cells, we assume the generation rate is k5VT , where k5 is a positive
constant. Since HIV-1 mutates very fast, the average term of validity of effector B-cells is shorter than normal, therefore we
multiply the death rate,µB, by a positive constantβ , which is bigger than 1. And so, the term B(t) should satisfy the following
equation.

Ḃ = k5VT − βµBB. (7)

Owing to the assumption that the antibodies’ concentration is proportional to effector B cells’ concentration, the
neutralizing rate should be expressed by qBV and the Eq. (5) should be modified to the following equation.

V̇ = a(1 − u2)I − k1VI − µVV − qBV . (8)

Further more, due to the fact that latently infected cells could be aroused while the actively infected cells’ concentration
is quite low [10], we advise the arousing rate is not proportional to I(t), but to its own concentration. As a result, Eqs. (3)
and (4) should be modified to the following two equations respectively.

L̇ = ω(1 − u1)k1VT − µT L − k2L, (9)

İ = (1 − ω)(1 − u1)k1VT + k2L − µI I − k3IE. (10)

In this paper, a new HIV treatment system is established as the following system (11).

Ṫ = rT

1 −

T + L + I
Tm


− µTT − (1 − u1)k1VT + s1,

L̇ = ω(1 − u1)k1VT − µT L − k2L,

İ = (1 − ω)(1 − u1)k1VT + k2L − µI I − k3IE,

V̇ = a(1 − u2)I − k1VT − µVV − qBV ,

Ė = k4ITE − µEE + s2,

Ḃ = k5VT − βµBB,
T (t0), L(t0), I(t0), V (t0), E(t0), B(t0) ≥ 0,
0 ≤ u1 ≤ b1, 0 ≤ u2 ≤ b2, 0 ≤ b1, b2 ≤ 1

(11)

where T , L, I, V , E, B denote the concentration of uninfected CD4+T cells, latently infected T cells, actively infected cells,
infectious viruses, cytotoxic lymphocytes effector and B cells respectively. Drugs efficiency is represented by the controls u1
and u2 which accounts respectively for reverse transcriptase and protease inhibitors actions.

It is worth pointing out that our model could be valid in a well mixed sample of blood, but by no means in all the
body.
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