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a b s t r a c t

In this paper, we propose a reweighted nuclear norm minimization algorithm based on
the weighted fixed point method (RNNM–WFP algorithm) to recover a low rank matrix,
which iteratively solves an unconstrained L2–Mp minimization problem introduced as a
nonconvex smooth approximation of the low rankmatrixminimization problem.Weprove
that any accumulation point of the sequence generated by the RNNM–WFP algorithm is a
stationary point of the L2–Mp minimization problem. Numerical experiments on randomly
generated matrix completion problems indicate that the proposed algorithm has better
recoverability compared to existing iteratively reweighted algorithms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The low rank matrix minimization problem (LRM for short) is to find a lowest rank matrix based on some feasible
measurement ensembles. When the set of measurement is affine in the matrix variable, the LRM is given by

min
X

rank(X) s.t. A(X) = b, (1.1)

where the linear map A : Rm×n
→ Rs and the vector b ∈ Rs are known.

The LRM has various applications in image compression, statistics embedding, system identification and control
problems; and it is NP-hard. The tightest convex relaxation of problem (1.1) is the following nuclear norm minimization
problem:

min
X

∥X∥∗ s.t. A(X) = b, (1.2)

where ∥X∥∗ :=
r

i=1 σi(X) is the sum of all the singular values of X ∈ Rm×n with rank(X) = r (here n ≤ m without loss
of generality). When X is restricted to be a diagonal matrix, problems (1.1) and (1.2) reduce to the sparse signal recovery
problem:

min
x

∥x∥0 s.t. Ax = b (1.3)

✩ This work was partially supported by the National Natural Science Foundation of China (Grant No. 11171252).
∗ Corresponding author at: Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, PR China.

E-mail address: huangzhenghai@tju.edu.cn (Z.-H. Huang).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.12.005

http://dx.doi.org/10.1016/j.cam.2013.12.005
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2013.12.005&domain=pdf
mailto:huangzhenghai@tju.edu.cn
http://dx.doi.org/10.1016/j.cam.2013.12.005


Y.-F. Li et al. / Journal of Computational and Applied Mathematics 263 (2014) 338–350 339

and the l1 norm minimization problem:

min
x

∥x∥1 s.t. Ax = b, (1.4)

respectively, where ∥x∥0 := |support(x)| := |{i | xi ≠ 0}| is the cardinality of the support set of x ∈ Rn, and
∥x∥1 :=

n
i=1 |xi| is the l1-norm of the vector x.

It is known that under some conditions on the linear transformation A (or matrix A), one can obtain an exact solution
of problem (1.1) (or (1.3)) via (1.2) (or (1.4)) [1,2]. Besides, problem (1.1) (or (1.3)) can also be relaxed to the nonconvex
optimization problem, such as, replacing the term ∥X∥∗ in (1.2) by the nonconvex term ∥X∥

p
p :=

n
i=1 σ

p
i (X) (or replacing

∥x∥1 in (1.4) by ∥x∥p
p :=

n
i=1 |xi|p) with 0 < p < 1. It was shown by Chartrand [3] that a nonconvex variant of (1.3) could

produce exact reconstruction with fewer measurements. Recently, there has been an explosion of research on this topic
both in vector case and matrix case, see, e.g., [4–14].

Recently, some nonconvex smooth approximation models were proposed in the literature. In the context of the vector
case, one of the models is the following unconstrained l2–lp minimization problem:

min
x

λ

n
i=1

(|xi| + ε)p + ∥Ax − b∥2
2 where 0 < p ≤ 1. (1.5)

This problemcan be solved by iteratively reweightedmethod: given xk at an iteration, it generates xk+1 as the unique solution
of the reweighted l1 norm minimization problem: minx λ∥W kx∥1 + ∥Ax − b∥2

2, where W k
= Diag{(|xki | + ε)p−1

: i =

1, . . . , n}. Such a reweighted l1 normminimization algorithm for sparse signal recoverywas originally introduced by Candés,
Wakin and Boyd [15]. In 2009, Foucart and Lai [6] proved that under the assumption of Restricted Isometry Property
(RIP for short) condition, the reweighted l1 norm minimization algorithm with weight wk

i = (|xki | + ε)p−1 for any index
i ∈ {1, . . . , n} can exactly recover the sparse signal, where p ∈ (0, 1) is a given parameter. Recently, Chen and Zhou [16] gave
anunconstrained iteratively reweighted l1 minimization algorithm to solve (1.5), and further proved that under RIP/NSP(Null
Space Property) type conditions the accumulation points of the sequence generated by the reweighted l1 normminimization
algorithm can converge to the stationary point of (1.5). Moreover, Chen and Zhou [17] also proposed an effective globally
convergent smoothing nonlinear conjugate gradient method for solving nonconvex minimization problems, which can
guarantee that any accumulation point of a sequence generated by this method is a Clarke stationary point of the problem
concerned.

In the context of the matrix case, Mohan and Fazel [18] proposed an iteratively reweighted least square (IRLS for short)
algorithm (see, e.g., [18–21]) for minimizing the smooth Schatten-p function fp(X) = Tr(XTX + γ I)p/2, i.e.,

min
X

fp(X) s.t. A(X) = bwhere 0 < p < 1.

Recently, Lai et al. [21] considered the unconstrained minimization problem:

min
X

Tr(XTX + ε2I)p/2 +
1
2λ

∥A(X) − b∥2
2 where 0 < p < 1.

Given W k at an iteration, the IRLS algorithm [21] generates Xk+1 by

Xk+1
:= argmin

X
Tr(W k

pX
TX) +

1
λ

∥A(X) − b∥2
2,

where W k
p = p(XkTXk

+ εk2I)p/2−1. Both in [18,21], the iteration of regular parameters γ and ε in the algorithm take the
same rule as the one in [22], i.e., γ k

= min{γ k−1, γsσr+1(Xk)} and εk
= min{εk−1, γsσr+1(Xk)} with γs < 1 and r being a

guesstimate of the rank.
In this paper, we first introduce an unconstrained smooth nonconvex approximation of problem (1.1) by the following

L2–Mp problem:

min
X

λ∥X∥p,ε + ∥A(X) − b∥2
2, (1.6)

where λ is a parameter which is sufficiently small, and ∥X∥p,ε :=
n

i=1(σi(X)+ ε)p with ε > 0 and p ∈ (0, 1). For any fixed
scalar ε > 0 and p ∈ (0, 1), ∥ · ∥p,ε is subdifferentiable; and it satisfies that ∥X∥p,ε → rank(X) as ε → 0 and p → 0. We
propose a reweighted nuclear norm minimization algorithm for solving problem (1.6), i.e.,

Xk+1
:= argmin

X
λp

n
i=1

wk
i σi(X) + ∥A(X) − b∥2

2, (1.7)

where wk
i = (σi(Xk) + ε)p−1 for all i ∈ {1, 2, . . . , n} and σi(Xk) is the i-th singular value of Xk. We call the weighted form

of
n

i=1 wk
i σi(X) as the weighted nuclear norm. It is not a norm strictly speaking, but it is convex. Thus, the iteration (1.7)

is called a reweighted nuclear norm minimization algorithm. For the implementation of the iteration (1.7), how to solve
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