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a b s t r a c t

We compare the collocation methods on graded meshes with that on uniform meshes for
the solution of the weakly singular Volterra integral equation of the second kind with
oscillatory trigonometric kernels. Due to, in general, unbounded derivatives at the left
endpoint of the interval of integration, we should approximate the solution of the integral
equation by collocation methods on graded meshes. However, we show that this non-
smooth behavior of the solution has little effect on the approximate solution when the
kernels of integral equation are highly oscillatory. Numerical examples are given to confirm
the proposed results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Volterra integral equation of the second kind

y(x) +

 x

0

K(x, t)
(x − t)α

y(t)dx = f (x), x ∈ [0, T ], α < 1, (1.1)

where K(x, t) is a continuous function and f (x) is a given function, arises in the study of various problems of mathematical
physics and engineering [1–3]. Particularly, when K(x, x) ≠ 0 and 0 < α < 1, (1.1) is called weakly singular.

The theoretical aspects of the solutions of the general weakly singular Volterra integral equation (1.1) had been widely
studied, and the existence and uniqueness of a solution had been established in certain cases, for details see [4–6]. However,
in most of the cases, the integral equation cannot be done analytically and one has to resort to numerical methods. For
solving such an integral equation, Galerkin methods and collocation methods and its variants are very popular [7,8,2,9,10].
The principal idea of collocationmethods is achieved by approximating the solution of integral equation y(x) by a piecewise
polynomial p(x). For details we refer to [7,11,2,12].

In (1.1), when α < 0, the global convergence order of the polynomial collocation method is O(hm) for the uniform
meshes [7], where h is the diameter of the mesh, m − 1 is the degree of the approximating polynomials. While 0 < α < 1
the kernel of Eq. (1.1) is non-smoothing, and the convergence order of the polynomial collocation method is only O(h1−α)
for uniform meshes, independent of the degree of the polynomials [7,8,2,13]. To cope with this problem, one has to use
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Table 1
Absolute error maxx∈Ih |ŷ(x) − y(x)| for y(x) +

 x
0

1
√
x−t y(t)dt = 1.

GL,0
10 UL,0

10 GL,1
10 UL,1

10

maxx∈Ih |ŷ(x) − y(x)| 0.141×10−1 0.266×10−1 0.202×10−2 0.308×10−1

Table 2
Absolute error maxx∈Ih |ŷ(x) − y(x)| for y(x) +

 x
0

1
√
x−t y(t)dt = 1.

GL,2
10 UL,2

10 GL,3
10 UL,3

10

maxx∈Ih |ŷ(x) − y(x)| 0.152×10−3 0.104×10−2 0.976×10−5 0.509×10−3

Table 3
Approximations for y(x) +

 x
0

eiω(x−t)
√
x−t y(t)dt = exp(x).

maxx∈Ih |ŷ(x) − y(x)| ω = 1 ω = 100 ω = 104 ω = 108

GL,0
10 0.414×10−1 0.144×10−1 0.246×10−3 0.270×10−7

UL,0
10 0.249×10−1 0.155×10−1 0.208×10−3 0.217×10−7

GL,1
10 0.618×10−2 0.741×10−2 0.229×10−3 0.307×10−7

UL,1
10 0.302×10−1 0.150×10−1 0.180×10−3 0.184×10−7

GL,2
10 0.112×10−3 0.562×10−2 0.292×10−3 0.143×10−5

UL,2
10 0.105×10−2 0.138×10−1 0.180×10−3 0.184×10−7

Table 4
Approximations for y(x) +

 x
0

eiω(x−t)

(x−t)0.1
y(t)dt = exp(x).

maxx∈Ih |ŷ(x) − y(x)| ω = 1 ω = 100 ω = 104 ω = 108

GL,0
10 0.111 0.953×10−2 0.134×10−3 0.821×10−8

UL,0
10 0.281×10−1 0.874×10−2 0.102×10−3 0.859×10−8

GL,1
10 0.269×10−2 0.640×10−2 0.694×10−4 0.694×10−8

UL,1
10 0.999×10−3 0.650×10−2 0.694×10−4 0.694×10−8

GL,2
10 0.105×10−4 0.566×10−2 0.680×10−4 0.677×10−8

UL,2
10 0.315×10−4 0.680×10−2 0.694×10−4 0.694×10−8

suitable graded meshes or use non-polynomial approximating functions reflecting the behavior of the exact solution near
t = 0. For a detailed analysis of the collocation method on graded meshes see [8]. However, for a highly oscillatory integral
equation, the convergence rate is not only determined by the meshes but also by the frequency ω. For ω ≫ 1, numerical
experiments show that collocation on uniform meshes can achieve the same precision with less computational cost as that
on graded meshes, see Tables 3–6.

On the other hand, the efficient evaluation of the solution of (1.1) is based on the efficient computation of the integrals
occurring in the collocation equation, which usually cannot be found analytically but have to be approximated by suitable
numerical quadrature formulas. Specially, when K(x, t) is a highly oscillatory function, where standard quadraturemethods
are exceedingly difficult and the cost steeply increases with the frequency, such as K(x, t) = eiωcos(x−t), i =

√
−1, ω ≫ 1.

In the last few years many efficient methods have been devised for the evaluation of the oscillatory integral
 b
a f (x)

eiωg(x)dx, such as the asymptotic method [14], Filon-type method [15], Levin’s collocation method [16], modified
Clenshaw–Curtismethod, Clenshaw–Curtis–Filon-typemethod [17], and generalized quadrature rule [18]. Recently, H. Kang
and S. Xiang presented some quadrature methods for a class of highly oscillatory integrals with singularities at the two
endpoints of the interval, for details see [19]. In many situations the accuracy of the Filon-type method is significantly
higher than that of the asymptotic method, even though it is of the same order. But the Filon-type method requires that the
moments

 b
a xkeiωg(x)dx are easily computable, which is not necessarily the case. To work around this weakness, Xiang [20]

derived an efficient Filon-typemethod, an approachwithout computing themoments. Also, Olver presented amoment-free
method, for details see [21,22].
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