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a b s t r a c t

In this paper we consider a two-level finite volume method for the two-dimensional un-
steady Navier–Stokes equations by using two local Gauss integrations. This new stabilized
finite volume method is based on the linear mixed finite element spaces. Some new a pri-
ori bounds for the approximate solution are derived. Moreover, a two-level stabilized finite
volume method involves solving one small Navier–Stokes problem on a coarse mesh with
mesh size H , a large general Stokes problem on the fine mesh with mesh size h ≪ H . The
optimal error estimates of the H1-norm for velocity approximation and the L2-norm for
pressure approximation are established. If we choose h = O(H2), the two-level method
gives the same order of approximation as the one-level stabilized finite volume method.
However, our method can save a large amount of computational time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Finite volume method (FVM) as one of the important numerical discretization techniques has been widely employed to
solve the fluid dynamics problems [1]. It is developed as an attempt to use finite element idea in the finite difference setting.
The basic idea is to approximate the discrete fluxes of a partial differential equation using a finite element procedure based
on volumes or control volumes, so FVM is also called box scheme, generalized difference method and so on (see [2,1]). FVM
has many advantages that belong to finite difference or finite element methods, such as, it is easy to set up and implement,
conserve mass locally and FVM also can treat the complicated geometry and general boundary conditions flexibility. How-
ever, the analysis of FVM lags far behind than that of finite element and finite difference methods, we can refer to [3–8] and
the references therein for more recent development about the finite volume method.

In this work, we consider the unsteady incompressible Navier–Stokes equations
ut − ν∆u + (u · ∇)u + ∇p = f , in Ω × (0, T ],
div u = 0 in Ω × (0, T ],
u = 0 on ∂Ω × (0, T ],
u = u0 on Ω × {0},

(1.1)
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where Ω be a bounded domain in R2 assumed to have a Lipschitz continuous boundary ∂Ω , u = (u1(x, t), u2(x, t))T the
velocity, p = p(x, t) the pressure, f = f (x, t) ∈ L2(Ω)2 the prescribed body force, ν > 0 the viscosity, u0 the initial velocity,
T > 0 a finite time, and ut = ∂u/∂t .

The development of an efficient finite element method for the Navier–Stokes equations is an important but challenging
problem in incompressible flow simulations. The importance of ensuring the compatibility of the component approxima-
tions of velocity and pressure by satisfying the so-called inf–sup condition is widely known. Although some stable mixed
finite element pairs have been studied over the years [9,10], while the P1–P1 pair not satisfying the inf–sup condition may
also work well. The P1–P1 pair is computationally convenient in a parallel processing and multigrid context because this
pair holds the identical distribution for both velocity and pressure. Moreover, the P1–P1 pair is of practical importance in
scientific computation with the lowest computational cost. Therefore, much attention has been attracted by the P1–P1 pair
for simulating the incompressible flow, we can refer to [11–14] and the references therein.

In order to use the unstable mixed finite element pairs, various stabilized techniques have been proposed and studied.
For example, the polynomial pressure projection method [11,14], the stream upwind Petrov–Galerkin (SUPG) method [15],
the Douglas–Wang method [16], the macro-element method [17] and so on. Most of these stabilized methods necessarily
introduce the stabilization parameters either explicitly or implicitly. In addition, some of these techniques are conditionally
stable or are of suboptimal accuracy. Therefore, the development of the efficient stabilized methods free from stabilization
parameters has become increasingly important.

Recently, a family of stabilized finite element methods for the Stokes problem have been established in [18] by using the
polynomial pressure projections, authors not only presented the stabilized discrete formulation for the Stokes equations
but also obtained the optimal error estimates. Compared with the other stabilized methods which mentioned above, this
new stabilized method has the following features: parameter-free, avoiding higher-order derivatives or edge-based data
structures and unconditionally stable. Based on the ideas of [18,11], by using the difference between two local Gauss
integrations as the component for pressure, Li et al. developed another new kind of stabilizedmethod for the incompressible
flow problem based on the linear function spaces [19,20,13,4], and their method can be applied to the existing codes with a
little additional effort.

On the other hand, the two-level method is an efficient numerical scheme for the partial differential equations based on
two spaces with different mesh sizes. This kind of discretization technique for linear and nonlinear elliptic partial differen-
tial equations was first introduced by Xu in [21,22]. After then, two-level scheme has been studied by many researchers, for
example, Dawson et al. studied the nonlinear parabolic equations by using the finite element or finite difference methods
in [23,24], respectively. Layton and Leferink [25] for Navier–Stokes equations, Bi and Ginting [26] expanded the two-level
scheme combined with finite volume method for linear and nonlinear elliptic problems. Recently, we studied the stability
and convergence of two-level finite volume methods for the nonlinear parabolic in semidiscrete and fully discrete formu-
lations in [6–8], respectively.

In this paper, we devote ourselves to the research of the two-level finite volumemethod for the unsteady Navier–Stokes
problem. By introducing a pressure polynomial projection operator from linear space to the constant space, some new a pri-
ori bounds of numerical solution are established. Another important novel ingredient of thiswork is the convergence analysis
of the approximate solution in two-level scheme. For the one-level finite volume scheme, which involves solving one large
nonlinear problem on a finemeshwithmesh size h, we have the following error estimate for the numerical solution (uh, ph):

ν∥∇(u − uh)∥0 + ∥p − ph∥0 ≤ Ch, (1.2)

where C > 0 is a generic constant, it may stand for different values at its different occurrences. Furthermore, we present
the two-level finite volume solution (uv

h, p
v
h) in the following error estimate:

σ
1
2 (t)(ν∥∇(u − uv

h)∥0 + ∥p − pv
h∥0) ≤ C(h + H2). (1.3)

Hence, if we choose H such that h = O(H2) for the two-level stabilized finite volume formulation, then the method we
studied is of the same convergence order as that of the one-level finite volume method. However, our method is simpler
than the one-level FVM.

2. Function setting for the Navier–Stokes equations

For the mathematical setting of problem (1.1), we set

X = H1
0 (Ω)2, Y = L2(Ω)2, D(A) = H2(Ω)2 ∩ X,

M = L20(Ω) =


q ∈ L2(Ω) :


Ω

qdx = 0


.

The spaces L2(Ω)m (m = 1, 2, 4) are endowed with the standard L2-scalar product (·, ·) and L2-norm ∥ · ∥0. The spaces
H1

0 (Ω) andH1
0 (Ω)2 are equippedwith the scalar product (∇u, ∇v) and norm ∥u∥2

1 = (∇u, ∇u), ∀ u, v ∈ H1
0 (Ω) orH1

0 (Ω)2.
We introduce the Laplace operator Au = −∆u, ∀ u ∈ D(A). For the initial data u0 and the body force f , we recall the

following assumption.
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