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a b s t r a c t

In this paper, we introduce the notion of rational Hausdorff divisor, we analyze the
dimension and irreducibility of its associated linear system of curves, and we prove that all
irreducible real curves belonging to the linear systemare rational and are at finiteHausdorff
distance among them. As a consequence, we provide a projective linear subspace where
all (irreducible) elements are solutions of the approximate parametrization problem for
a given algebraic plane curve. Furthermore, we identify the linear system with a plane
curve that is shown to be rational and we develop algorithms to parametrize it analyzing
its fields of parametrization. Therefore, we present a generic answer to the approximate
parametrization problem. In addition, we introduce the notion of Hausdorff curve, and we
prove that every irreducible Hausdorff curve can always be parametrized with a generic
rational parametrization having coefficients depending on as many parameters as the
degree of the input curve.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When applying computational mathematics in practical applications, even though one may be dealing with a problem
that can be solved algorithmically, and even though one has good algorithms to approach the solution, it can happen, and
often it is the case, that the problem has to be reformulated and analyzed from a different computational point of view. This
is the case of the development of approximate algorithms. This paper frames in the research area of approximate algebraic
geometry and commutative algebra and, more precisely, on the problem of the approximate parametrization.

1.1. Approximate algebraic geometry and commutative algebra

We start with a subsection devoted to introduce informally the idea of approximate algorithm and to comment on some
achievements in approximate algebraic geometry and commutative algebra.

Let E be a mathematical entity appearing in the resolution of a practical problem (e.g. E is a real polynomial) that is
known, because of the nature of the treated applied problem, to satisfy certain property P (e.g. being reducible over Q)
that implies the existence of certain associated objects E1, . . . , En (e.g. the irreducible factors over Q of the polynomial), and
let the goal of the problem be to compute E1, . . . , En. However, often in practical applications, we receive a perturbation
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E ′ of E instead of E , where the property P does not hold anymore neither the associated objects Ei exist; for instance, a
perturbation of a Q-reducible polynomial will be, in general, Q-irreducible and, therefore, the application of the existing
polynomial factorization algorithms will just not solve our problem. One may try to recover the original unperturbed entity
E . Since, this is essentially impossible, a more realistic version of the problem is to determine a new object E ′′ near E ′,
satisfying P , as well as computing the associated objects E ′′

i to E ′′. An algorithm solving a problem of the above type is
called an approximate algorithm; a solution of the illustrating example on polynomial factorization is given e.g. in [1].

One may distinguish two main phases when dealing with this type of problems. On one hand, the development of a
theoretical reasoning that yields an algorithm and, on the other, providing an analysis of the distance between input and
output in terms of a given tolerance. The distance used depends on the particular treated problem. For instance, in the
factorization problem, if the input is f ∈ C[x1, . . . , xn], and the output is g ∈ C[x1, . . . , xn], one requires that ∥f − g∥∞ is
smaller than the tolerance. Algebraic varieties (that is, sets of points whose coordinates are zeros of some polynomials), as
for instance algebraic curves and algebraic surfaces, are the main objects in algebraic geometry. Therefore, in approximate
algebraic geometry (which is our case), in general, since one usually deals with sets, the Hausdorff distance is used. Indeed,
the Hausdorff distance has proven to be an appropriate tool for measuring the resemblance between two geometric objects,
becoming in consequence a widely used tool in fields as computer aided design, pattern matching and pattern recognition
(see e.g. [2,3]); at the end of Section 1.2 we recall the definition of Hausdorff distance.

One can find in the literature papers treating this type of problems (say related to algebraic geometry and commutative
algebra) with the same, or similar, strategies; see [4] for a general overview on approximate commutative algebra.
Approximate algorithms for computing polynomial gcds can be found in [5–7], the polynomial factorization problem is
addressed in [8,9,1,10]. For algebraic varieties there also exist approximate solutions: see [11–13] for the implicitization
problem, see [14–16] for the study and analysis of singularities, and for the parametrization problem see [17–26];
approximate parametrization is the central topic of this paper and it will be commented in detail in the next subsections of
this introduction.

1.2. Approximate parametrization problem

The approximate parametrization problem can be stated as follows (we state it for plane curves, but it can be similarly
stated for space curves, see [25], and for surfaces, see [24]).

Approximate parametrization problem for plane curves: Given the implicit equation of a non-rational real plane curve
C and a tolerance ϵ > 0, decide whether there exists a rational real plane curve C at finite small distance (i.e. small
related to the tolerance ϵ) to the input curve C and, in the affirmative case, compute a real rational parametrization
of C.

The problem, as stated above, requires a global answer, that is, an algebraic curve C to play the role of C. However,
not always such an answer exists. For instance, if one is interested in getting C with the same topological graph as C, the
expected answer is that therewill be no global solution; note that the genus ofC andC are different and the genusmeasures
the difference between the maximum number of singularities and the actual one, counted properly, and this clearly affects
the graph. So, the problem is often reformulated such that the solution is given in terms of piecewise rational curves; see
for instance [18–21,26]. We, in our research (see [22–25]), are interested in the global answer, and hence, in the problem as
it is stated above.

In our situation, the input curve C is supposed to have suffered a perturbation, in the sense that the coefficients of its
defining polynomials have been perturbed. To treat the problem, even though the coefficients of our input polynomial have
suffered a perturbation, and hence they are not the correct expected ones, we consider them as exact coefficients of our
input and we work symbolically with them. For instance, let us consider the curve C defined by the implicit equation
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and the curve C defined by the implicit equation
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x3 + 3 x2y − y2x − 3 y3 = 0.

The curve C cannot be parametrized by means of rational functions, indeed its genus is 3, while C can be parametrized
e.g. by
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and one can see in Fig. 1 that both curves are close to each other.
But, above, what does it mean that C and C are close? As mentioned before, we require that the Hausdorff distance

between C, C is small related to a given tolerance ϵ. A main difficulty when working with the Hausdorff distance is that, if
not both sets are bounded, the distance between them can be infinity. Most of the papers deal with bounded real algebraic
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