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a b s t r a c t

We consider a mixed-boundary-value/interface problem for the elliptic operator P =

−


ij ∂i(aij∂ju) = f on a polygonal domain Ω ⊂ R2 with straight sides. We endowed
the boundary of Ω partially with Dirichlet boundary conditions u = 0 on ∂DΩ , and par-
tially with Neumann boundary conditions


ij νiaij∂ju = 0 on ∂NΩ . The coefficients aij are

piecewise smooth with jump discontinuities across the interface Γ , which is allowed to
have singularities and cross the boundary ofΩ . In particular,we consider ‘‘triple-junctions’’
and even ‘‘multiple junctions’’. Our main result is to construct a sequence of Generalized
Finite Element spaces Sn that yield ‘‘hm-quasi-optimal rates of convergence’’, m ≥ 1, for
the Galerkin approximations un ∈ Sn of the solution u. More precisely, we prove that
∥u − un∥ ≤ C dim(Sn)−m/2

∥f ∥Hm−1(Ω), where C depends on the data for the problem, but
not on f , u, or n and dim(Sn) → ∞. Our construction is quite general and depends on a
choice of a good sequence of approximation spaces S ′

n on a certain subdomainW that is at
some distance to the vertices. In case the spaces S ′

n are Generalized Finite Element spaces,
then the resulting spaces Sn are also Generalized Finite Element spaces.

© 2014 Elsevier B.V. All rights reserved.

Introduction

The purpose of this work is to present a general construction of finite-dimensional approximation spaces Sn that yields
quasi-optimal rates of convergence for the Galerkin approximation of the solution to an elliptic equation in a polygonal
domain, when mixed Dirichlet–Neumann conditions are given at the boundary. The coefficients of the equation are
piecewise smooth, but may have jump discontinuities across the union of a finite number of closed polygonal lines, which
we call the interface. The interface may intersect the boundary of the polygonal domain.

The construction of the Galerkin spaces Sn employs a sequence of local spaces S ′
n with good approximation properties

given on a subset ofΩ at a positive distance from the singular points of the domain and the interface. Once S ′
n are chosen,

grading towards the vertices and suitable partitions of unity are employed to define the Galerkin spaces on the whole
domain. Therefore, the construction of the spaces Sn falls into the category of Generalized Finite Element Methods (GFEM)
and do not require any particular meshing of the domain in advance.

We next describe the problem and the geometric set-upmore precisely. LetΩ ⊂ R2 be a polygonal domainwith straight
sides (we will call it a straight polygonal domain). We assume thatΩ = ∪

K
k=1Ωk, where Ωk are disjoint straight polygonal

domains. The set Γ := ∂Ω\ ∪
K
j=1 ∂Ωk, that is, the part of the boundary of someΩk that is not contained in the boundary of
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Ω , will be called the interface. We then consider the following boundary value problem:
− div(A∇u) = f inΩ
ν · A · ∇u = 0 on ∂NΩ
u = 0 on ∂DΩ,

(0.1)

where ∂NΩ := ∂Ω\∂DΩ is a decomposition ∂Ω into two disjoint sets, with ∂DΩ a finite union of closed straight segments,
and ν is the unit outer normal to Ω , defined everywhere except at the vertices. We assume that the differential operator
P := − div A∇ =


ij ∂iaij∂j is uniformly strongly elliptic and that its coefficients aij are piecewise smooth, but may jump

across the interface Γ . For this reason, we will refer to Problem (0.1) as amixed boundary value/interface problem onΩ .
Mixed boundary value/interface problems often appear in engineering and physics. It is well-known that ifΩ is convex,

f ∈ L2(Ω), and the coefficient matrix A = [aij] is smooth on Ω (so there is no interface), then the solution u of (0.1) is in
H2(Ω), and we can get quasi-optimal rates of convergence for the standard Finite Element Method (FEM) with piecewise
linear polynomials and quasi-uniform meshes. When Ω is not convex and the boundary has singularities or the matrix A
is discontinuous, on the other hand, then u does not belong to H2(Ω) and we may obtain decreased rates of convergence
of the Finite Element approximations of u on quasi-uniformmeshes. Here and throughout the paper, we denote by Hm(Ω),
m ∈ Z+, the standard L2-based Sobolev spaces.

Finding efficient methods to treat mixed boundary value problem on straight polygons using Generalized Finite Element
Method is part of the general problem of numerically treating singularities. If the coefficients aij are smooth on each
subdomain Ωj, then singularities arise only at the vertices of the domain Ω , at the points where the boundary conditions
change, and at the singular points of the interface or where the interface touches the boundary. Additional singularities will
arise if some of the coefficients aij or the data f are singular at some other points. In this paper, however, we shall assume
that our coefficients are piecewise smooth and that data is regular, i.e., f ∈ Hm−1(Ω), m ≥ 1.

The structure of corner singularities in two dimensional space is well known by the works [1,2] and many others. (See,
for instance [2–7], for more information about singularities that are especially relevant to this paper). Singularities in the
solution in the neighborhood of a corner are determined by the spectrum of the resulting pencil of elliptic operators obtain
through the Mellin Transform [2,8].

The FEMs and GFEMs are examples of Galerkin-based numerical methods, a concept we briefly recall. It is based on the
weak formulation of problem (0.1), which is discussed in Section 1. Suppose we are given a sequence of finite-dimensional
spaces Sn ⊂ H1(Ω) such that all the functions ψ ∈ Sn satisfy the essential (i.e., Dirichlet) boundary conditions of Eq. (0.1)
on ∂DΩ . For the simplicity of the presentation, we shall assume that ∂DΩ is not empty. That is, we do not consider the pure
Neumann problem explicitly. To consider also the pure Neumann problem, all that one needs to do in practice is to restrict
to functions v ∈ Sn with zero mean. We define, as usual, the Galerkin approximation un ∈ Sn of the variational solution u of
Problem (0.1), to be the exact solution of the projected problem:

B(un, vn) :=


ij


Ω

aij∂iun∂jvn = (f , vn), for all vn ∈ Sn ⊂ H1
D(Ω), (0.2)

where H1
D(Ω) := {f ∈ H1(Ω), f = 0 on ∂DΩ} and the bilinear form B(u, v) is given in (1.5). We want a hm-quasi-optimal

rate of convergence, that is, we want to have the following error estimate for all n

∥u − un∥H1(Ω) ≤ C dim(Sn)−m/2
∥f ∥Hm−1 ,

where C is independent of f and n. Up to the value of C this is the ideal rate that can be obtained if u ∈ Hm+1(Ω) and quasi-
uniformmeshes are used in the Finite ElementMethod. In this case, if h is the typical size of an element, then dim(Sn) ∼ h−2

hence the name. However, in general, u ∉ Hm+1(Ω). If Ω is concave, even u ∉ H2(Ω) in general for the standard Poisson
problem. In fact, asmentioned, singularitiesmay lower the rate of convergence of the Finite Element solutions of the discrete
problem when using quasi-uniform meshes.

Our approach to the optimal rate of convergence is based on the weighted Sobolev spaces for mixed boundary value and
interface problems on polygonal domains, obtained by two of the authors among others [6,9–11], and a grading towards
each singular point. The weight is here the distance to the singular set. Our main result is to construct a sequence Sn of the
Generalized Finite Element spaces that yields quasi-optimal rates of convergence. We are not assuming u ∈ Hm+1(Ω) and
we can relax the condition f ∈ Hm−1(Ω) to f ∈ Ĥm−1(Ω) :=


Hm−1(Ωj) if an interface is present.

As we mentioned above, we use some auxiliary, ‘‘good approximation spaces’’ S ′
n, defined on an auxiliary, but fixed

domain W away from the vertices. Together with grading towards the singular point and partitions of unity, the spaces
S ′
n lead to the construction of the Galerkin spaces Sn that then yield our desired hm-quasi-optimal rates of convergence.
Many choices for the spaces S ′

n exist [6,12–14], and their definition is, for themost, part very well known, so we do not recall
them here.

We notice, however, that if the sequence S ′
n is a sequence of GFEM spaces, then Sn will also be a sequence of GFEM spaces.

However, if S ′
n consists of FEM spaces, then Sn will not consist of FEM spaces, in general. In fact, we mention two examples

that satisfy the required approximation condition (see (2.5)). One example is that of FEM spaces consisting of piecewise
linear elements on a sequence of appropriately graded meshes, where the grading is determined by the strength of the
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