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a b s t r a c t

The aim of this paper is to develop a unified special extended Nyström tree (SEN-tree)
theory which provides a theoretical framework for the order conditions of multidimen-
sional extended Runge–Kutta–Nyström (ERKN) methods proposed by X. Wu et al. (Wu et
al., 2010). The new SEN tree theory is complete and consistent, which has overcome the
drawback of the bi-coloured tree theory in H. Yang et al.’s work (Yang et al., 2009) where
two ‘‘branch sets’’ have to be constructed for the true solutions and for the numerical so-
lutions, respectively.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years the effective numerical integration of the following the non-stiff second-order initial value problem (IVP)
y′′

+ My = f (y), t ∈ [x0, xend],
y(x0) = y0, y′(x0) = y′

0,
(1)

has received great attention, where y ∈ Rd, f : Rd
→ Rd is continuous, M is a d × d positive semi-definite coefficient

matrix containing implicitly the frequencies of the problem. This type of problems arise naturally in a variety of areas such as
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celestialmechanics, quantumphysics, theoretical chemistry, electronics and so on. Before thework of Bettis [1], the problem
(1) had been dealt with by the general-purpose Runge–Kutta (RK)methods, Runge–Kutta–Nyström (RKN)methods or linear
multistep methods (LMM) (see [2–4]). Since these methods fail to take into account the special structure of the problem (1),
they often give unsatisfactory numerical results.

In applications, it is often the case that the function f (y) in (1) satisfies f (y) = −∇U(y) for some smooth function U(y).
With the notation q = y and p = q′, the system (1) is then a Hamiltonian system with the Hamiltonian

H(p, q) =
1
2
pTp +

1
2
qTMq − U(q).

Symplectic RK or RKNmethods have proved to preserve the symplectic structure of the exact flows of Hamiltonian systems
in the long-run integration (see, for example, [3–6]). Among pioneers in symplectic methods we mention de Vogelaere [7],
Ruth [8] and Feng [9,10]. Sanz-Serna [11], Hairer et al. [4] and Suris [12,13] have discovered the symplecticity conditions
for RKmethods, RKN and partitioned Runge–Kutta (PRK) methods, respectively. Order conditions for PRK and RKNmethods
are also derived via bi-coloured trees (i.e., Nyström trees) and the P-series theory in [4].

Bettis [1] is one of the first who consider the construction of the numerical integrators adapted to the oscillatory property
of the solution to the problem (1). González et al. [14] give a family of explicit RK type methods for the system of the form
(1) with M = ω2Id (ω > 0 is the principal frequency and Id is the d × d identity matrix). When a good estimate of the
frequency of the problem is known in advance, a new exponential fitting technique is invented to adapt the traditional
methods to the oscillatory feature of the problem (1). See, for example, [15–22] for details. For second-order oscillatory
differential equations, it is most natural to consider exponentially-fitted Runge–Kutta–Nyström (EFRKN) methods (see
[23–25]). In particular, A. Tocino et al. [26] investigate the symplecticity conditions for exponentially fitted RKN methods.
Very recently,Wuet al. [27] develop symplecticmultidimensional exponentially fittedmodifiedRKNmethods for the system
(1) as a Hamiltonian system.

On the other hand, Franco [28] modifies the updates of the traditional RKN methods and proposes the RKN methods
adapted to perturbed oscillators (ARKN). Wu et al. [29] generalize Franco’s one-dimensional version of ARKN methods to
a multidimensional form. On the other hand, Yang et al. [30] observe that for the harmonic oscillator y′′

+ ω2y = 0, the
internal stages Yi of an ARKN method fail to equal the exact values of the solution y(x) at tn + cih. Then they extend the
characteristic form of the updates of ARKNmethods to the internal stages and propose the extended Runge–Kutta–Nyström
(ERKN)methods for the problem (1) in the caseM is a diagonal matrix. Wu et al. [31] succeed forming themultidimensional
ERKNmethods for the more general problem (1). Chen et al. [32] construct symmetric and symplectic ERKNmethods which
outperform some highly efficient RKN type methods in the literature.

Compared with the traditional general form of the second-order problem y′′
= g(x, y), due to the special term −My in

the problem (1), the expansions of the true solutions and the numerical solutions have new terms characterized by the factor
−M . Traditional (bi-coloured) Nyström tree (see [3]) are not adequate to represent these new elementary differentials. As
a recipe, in the special case that M in the problem (1) is diagonal Yang et al. [30] develop a tri-coloured tree theory, from
which the order conditions for ERKN methods are derived, based on which Wu et al. [31] derive the order conditions for
multidimensional ERKN methods. However, this tree theory, consisting of a so-called branch set BT with some functions
(order ρ(βτ), elementary differential F (βτ), α(βτ) and signed density γ (βτ)) defined on the set, and a tree set T with
corresponding functions, is complicated and is yet beautiful.

The purpose of this paper is to establish a new special extended Nyström tree (SEN-tree) theory with the aim at lay-
ing a theoretical foundation for the multidimensional ERKN methods proposed in [31]. We only need a set of bi-coloured
trees (special extended Nystöm trees) SENT . All results on the expansion of the exact solution, the numerical solution and
hence the order conditions are built up based on this set SENT . Here the matrix M in the system (1) is a general positive
semi-definite matrix, even not necessarily symmetric. Thus the ERKNmethods investigated in this paper are applicable to a
wider range of second-order oscillatory problems. Another advantage of our ERKNmethods is that the evaluation of matrix
functionsφ0(V ) andφ1(V ) and the other V -depend coefficients (V = h2M) in the scheme are free from thematrix decompo-
sition ofM and hence the cost of computation is largely reduced. In early work such as [14,15,17,24,25,28,33,34], they only
deal with oscillatory systems with a single frequency. In [23], since w2 is diagonal, φ0(v), φ1(v), āij(v), aij(v), b̄i(v), i, j =

1, 2, . . . , s (v = hw) are all diagonal and their computation is essentially componentwise. The analysis andmethods in [35]
explicitly depend on the decomposition of the frequency matrixM = Ω2.

In Section 2, based on the matrix-valued φ-functions, a matrix form of the variation-of-constants formula is obtained,
leading to the formulation of ERKN methods for the system (1). In Section 3 a new set of special extended Nyström
trees (SEN-trees) are constructed to represent differentials in the expansions of higher derivatives of the true solutions
of the system (1) and the numerical solutions produced by ERKN methods. Some important mappings are recursively
defined on the SEN-tree set. Section 4 is concerned with the order conditions of ERKN methods derived by the new
SEN tree theory. In Section 5 two explicit multidimensional ERKN integrators of respective orders four and five are de-
rived from the order conditions and two simplifying conditions. In Section 6 we carry out some numerical experiments
to illustrate the superiority of ERKN methods to several highly efficient codes in the literature. Section 7 is devoted to
conclusions.
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