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a b s t r a c t

We propose a methodology based on the Laplace transform to compute the variance of
the hedging error due to time discretization for financial derivatives when the interest
rate is stochastic. Our approach can be applied to any affine model for asset prices and
to a very general class of hedging strategies, including Delta hedging. We apply it in a
two-dimensional market model, obtained by combining the models of Black–Scholes and
Vasicek, where we compare a strategy that correctly takes into account the variability of
interest rates to one that erroneously assumes that they are deterministic. We show that
the differences between the two strategies can be very significant. The factorswith stronger
influence are the ratio between the standard deviations of the equity and that of the interest
rate, and their correlation. The methodology is also applied to study the Delta hedging
strategy for an interest rate option in the Cox–Ingersoll and Ross model, measuring the
variance of the hedging error as a function of the frequency of the rebalancing dates. We
compare the results obtained to those coming from a classical Monte Carlo simulation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most of the mathematical models for arbitrage pricing in continuous time assume that markets are always open and
that trading is performed continuously in time. Although it is obvious that such an assumption does not hold in practice,
the pricing formulas and the hedging strategies valid in the case of continuous trading are usually also adopted in everyday
practical situations. Our goal is to propose a methodology to evaluate the impact of trading in discrete time when hedging
strategies are constructed under a continuous time assumption.

The object of our investigation is the ex-ante assessment of the performances of dynamic trading strategies. Probably the
most notable instance of such a problem is measuring the hedging error of a strategy, based on a liquid assets, that tries to
hedge a future liability. Problems of such a kind arise when replicating either a claim using futures contracts, or a payoff of
a derivative security with a Delta hedging strategy based on the underlying asset, and in any case when a dynamic strategy
is adopted. Ex-ante, a possible way to measure the performance of a strategy is by evaluating expected value and variance
of its hedging error. This is usually done by approximations or byMonte Carlo simulations. The approach we propose, based
on Laplace transforms, allows to efficiently perform such computations for a very general class of models. This paper is the
third one of a series of studies that addressed such an issue in different settings. Our previousworks on this subject, towhom
we refer for a deeper introduction to the problem, are Angelini and Herzel [1,2], the first dealing with market models based
on Lèvy processes, the second where the more general class of affine processes are considered.

We consider a market model driven by continuous time affine processes, in which, by definition, the conditional char-
acteristic function is an exponential of an affine function of the state variables (see Duffie et al. [3] for a formal definition
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and properties of affine models). In this framework, Angelini and Herzel [1,2] provide semi-closed formulas for the efficient
computation of expected value and variance of the hedging error for a quite general class of strategies, called ‘‘affine’’, that
includes the popular Delta hedging strategy. Such formulas are obtained by using a Laplace transform approach, that is based
on the idea of writing the payoff of the contingent claim as an inverse Laplace transform, introduced by Hubalek et al. [4]
in the context of variance–optimal hedging. An important feature of the result is that one can study different types of mis-
specification. For instance, it is possible to analyze the performance of the standard Black–Scholes Delta strategy when the
underlying asset is driven by a process which is not log-normal, like in a stochastic volatility model.

In our previous contributionswemade the simplifying assumption of deterministic interest rates. In the presentwork,we
extend the analysis to the case of stochastic interest rates. Such an extension gives us the opportunity to study the hedging
problem in a more general and realistic model. For example, we can measure the effect of assuming that the interest rate
is deterministic when in fact it is stochastic. As an example, we consider a simple two-dimensional affine model, where
the underlying evolves according to the Black–Scholes dynamics, while the short-term interest rate follows the process of
the Vasicek model, and the stock and the interest rate may be correlated. This is a particular case of a model considered in
van Haastrecht et al. [5] to price long-term derivatives. Within this model, we implement two types of Delta strategies: the
correct strategy that takes into account the randomness of the interest rate, which may be called the model Delta, and the
plain Black–Scholes Delta with deterministic rate. We show that the differences between the two strategies may be very
relevant. The most important factors are the correlation and the ratio between the volatility of the risky asset and that of
the interest rate. Therefore, the standard Black–Scholes Delta-hedging strategy, still widely used by practitioners, may be
not appropriate because it may lead to a variance of the error much higher, in relative terms, to that produced by the correct
Delta, especially when the volatility of the interest rates is comparable to that of the stock. It is noteworthy to observe
that the relatively poor performances of the Black–Scholes Delta are peculiar in the present setting. In fact, Angelini and
Herzel [2] showed that if the interest rates are deterministic but the volatility is stochastic, then the Black–Scholes Delta
often outperforms the model Delta. We conclude with a study of the Delta hedging for an interest rate option in the Cox,
Ingersoll and Ross model [6], providing numerical illustrations for the cases of objective measures different from the risk-
neutral measures used to implement the strategy. In that setting we are also able to provide a further numerical validation
of the precision of our algorithm, by comparing its results to those obtained by simulations.

2. The computational algorithm

Let us consider the problem of hedging a European contingent claim with maturity T , whose payoff H is represented as
an inverse Laplace transform:

H =


C

ezyTΠ(dz), (2.1)

where C = R + iR, with R ∈ R, Π is a finite complex measure on C and yT = ln(ST ), where S is the price of a risky asset.
The log-return y = ln(S) of the underlying asset and a short term stochastic interest rate r are components of a multi-
dimensional affine process X , whose other components may include stochastic volatility, dividend yields, etc. The simplest
example of such amodel is obtained by taking the Black–Scholes dynamics for the underlying and a short rate model for the
interest rate, like the Vasicek model [7]. In this case one can also consider a non zero correlation between stock and interest
rate.Wewill use thismodel for applications in Section 3.1. If the Cox, Ingersoll and Rossmodel [6] is used for the interest rate,
the resulting two-dimensional model would be affine if and only if the correlation is zero. A model that includes stochastic
volatility as well as stochastic interest rate is studied in van Haastrecht et al. [5]. Pan [8] studied a four-dimensional affine
model combining stochastic volatility, interest rates and dividend yield.

Let (Ω,F , (Ft)0≤t<∞, P) be a filtered probability space satisfying the usual technical conditions. We interpret P as the
physical or objective probability measure. Let us consider an affine time-homogeneous Markov process X defined in a state
space D ⊂ Rd and write its conditional characteristic function as

φ(u, Xt , t, s) = Et

eu·Xs


= eα(u,t,s)+β(u,t,s)·Xt , (2.2)

whereu ∈ iRd, t, s ∈ [0, T ]with t ≤ s, Et denotes the expected value conditional onFt and · the scalar product. The functions
α(u, t, s) and β(u, t, s) go from iRd

× R+ × R+ to C and to Cd respectively, and satisfy a system of Riccati equations whose
general form is given in Duffie, Pan and Singleton [3, Eqs. (2.5) and (2.6)]. We suppose that the functions α(u, t, T ) and
β(u, t, T ) can be analytically extended to an open convex domain U containing 0 ∈ Cd for all t ∈ [0, T ]. In this paper we
skip technical conditions on the domain U (see Angelini and Herzel [2] for a thorough analysis on this point).

We also assume that X is affine under a pricing measure Q . Conditions for a process to be affine under both measures P
and Q are given by Duffie, Pan and Singleton [3]. We consider the discounted conditional characteristic function

ψ(u, Xt , t, s) = EQ
t


exp


−

 s

t
rτdτ


eu·Xs


= eᾱ(u,t,s)+β̄(u,t,s)·Xt . (2.3)
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