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a b s t r a c t

Classes of permutations of finite fields with various specific properties are often needed for
applications. We use a recent classification of permutation polynomials using their Carlitz
rankwith advantage, to produce examples of classes of permutations ofFp, for odd p, which
for instance are ‘‘random’’, have lowdifferential uniformity, prescribed cycle structure, high
polynomial degree, large weight and large dispersion. They are also easy to implement.We
indicate applications in coding and cryptography.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Permutation polynomials over finite fields have attracted significant attention in the last decades, due to their vast
applications, especially in combinatorics, cryptography, coding and pseudorandom number generation. Naturally, methods
of construction of various types of permutations and/or newways of classifying themare needed in order tomeet the specific
requirements of individual applications. Here we present classes of permutations of finite fields Fq, q = pr , r ≥ 1, for odd
primes p, which possess a variety of properties that can be advantageous for diverse applications.
Permutations with low differential uniformity, for instance, are sought for to be used in symmetric cryptography since
they provide good resistance to differential attacks, see [1–3]. We recall that the differential uniformity δf of a function
f from a finite field Fq to itself is determined by properties of the difference map Df ,a(x) = f (x + a) − f (x), a ∈ F∗

q;

i.e., δf = maxa∈F∗
q ,b∈Fq δf (a, b), where δf (a, b) = #{x ∈ Fq,Df ,a(x) = b}. One would also need such permutations to be

implemented easily, hence usually sparse polynomials are studied, for example in [4–6]. Our approach provides examples
with added polynomial complexity, i.e., high degree and large weight, yet they can still be implemented easily. We note
that while most cryptosystems use Boolean functions or permutations of finite fields of characteristic two, there is an
increasing interest in permutations of finite fields of odd characteristic or bijections between finite groups of the same
cardinality also, for details we refer the reader to [1,2,7] and references therein. The concepts of ambiguity and deficiency of
permutations between two finite abelian groups of the same cardinality, which concern the difference map are introduced
and permutations with optimal behavior with respect to these measures are studied in [8,9], see Remark 3.2 below for
further comments. Costas permutations, which are interesting combinatorial objects were first introduced for applications
and the corresponding difference map shows an extreme behavior, as we explain in Section 2. The relationship between
almost perfect nonlinear (APN) and Costas permutations of the rings Zn has been first investigated in [10]. We also explore
this relationship and provide evidence supporting the description of [10], that it is ‘‘quite erratic’’. For small primes we give
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examples of almost Costas permutations, in a sense that we describe below. Permutations with a particular cycle structure
are of importance in turbo-like coding or low-density-parity-check codes (LDPC), see [11–13]. Those which decompose into
cycles of length two for instance are their own inverses, and hence the sameprocedure for encoding can be used for decoding.
‘‘Random’’ permutations with prescribed cycle structure are of particular interest for use as interleavers in turbo codes.
We use two basic tools to relate various favorable properties of permutations of Fq and obtain classes with such attributes.
Our first tool is the classification of permutation polynomials with respect to their Carlitz rank. We recall that Sq, the
symmetric group on q letters, is isomorphic to the group of permutation polynomials of Fq of degree less than q, under
the operation of composition and subsequent reduction modulo xq − x. A well known result of Carlitz [14] states that Sq
is generated by the linear polynomials ax + b, for a, b ∈ Fq, a ≠ 0, and xq−2. Consequently, as pointed out in [15], with
P0(x) = a0x + a1, any permutation P of Fq can be represented by a polynomial of the form

Pn(x) = (· · · ((a0x + a1)q−2
+ a2)q−2

· · · + an)q−2
+ an+1, n ≥ 0, (1)

where a1, an+1 ∈ Fq, ai ∈ F∗
q = Fq \ {0} for i = 0, 2, . . . , n.

The Carlitz rank of P , denoted as Crk(P ), is defined in [16] to be the smallest integer n ≥ 0 satisfying P = Pn for a
permutation Pn of the form (1). Our second tool is the so called dispersion. Dispersion is also concerned with the difference
map and for a permutation P of the set {0, 1, . . . , n − 1}, it is defined as the cardinality of the set {(j − i, P(j) − P(i))|0 ≤

i < j ≤ n− 1}. This concept has been in use as a randomness measure of permutations for their possible use as interleavers
in turbo codes, see [17].
This paper is organized as follows. After giving preliminaries in Section 2, we focus on evaluation in Section 3 of dispersion
of permutations of Carlitz rank 1, and show that with an appropriate choice of parameters, these polynomials provide
the first examples having provably high dispersion, and hence can be considered as ‘‘random’’. Indeed only a few non-
empirical results on the dispersion of permutations of finite fields have appeared so far, in connectionwith coding theoretical
applications, and only about monomials, see [18,19]. In Section 4 we characterize and enumerate permutations of Carlitz
rank 1 with prescribed dispersion and cycle decomposition. Section 5 focuses on permutations of Carlitz rank > 1. We
complete this work by presenting results on the differential uniformity of permutations of small Carlitz rank in Section 6.

2. Preliminaries

We start by recalling that a permutation πc of {0, 1, . . . , n − 1} is called a Costas permutation (or a Costas array) if for
every 0 ≤ i, j, k, i + k, j + k ≤ n − 1,

πc(i + k) − πc(i) = πc(j + k) − πc(j)

implies k = 0 or i = j. For an extensive review of literature on Costas permutations, together with its applications we refer
to [20,21].
Drakakis et al. consider permutations with the following stronger properties in [10]. A permutation π of {0, 1, . . . , n − 1}
is called a range (R-) periodic Costas permutation if for every 0 ≤ i, j, k, i + k, j + k ≤ n − 1,

(π(i + k) − π(i)) mod n = (π(j + k) − π(j)) mod n (2)

implies k = 0 or i = j. Similarly π is called a domain-and-range (DR-) periodic Costas permutation if (2) is replaced by

(π((i + k) mod n) − π(i)) mod n = (π((j + k) mod n) − π(j)) mod n. (3)

Hence a DR-periodic Costas permutation permutes the ring Zn. As it is proved in [10], R-periodic Costas permutations of
{0, 1, . . . , n − 1} do not exist if n is odd. Therefore there are no DR-periodic Costas permutations of a finite field Fp, p > 2.
As usual we identify the finite field Fp with {0, 1, . . . , p − 1}. We need to calculate both in Z and in Fp, and in order to
avoid confusion, we denote addition and subtraction in Fp by ‘‘⊕’’, and ‘‘⊖’’. With this notation P ∈ Fp[x] is a (DR-) Costas
permutation if

P(i ⊕ k) ⊖ P(i) = P(j ⊕ k) ⊖ P(j)

implies k = 0 or i = j, for all i, j, k, i ⊕ k, j ⊕ k ∈ Fp.
Difference triangles are often used to help visualizing the Costas property and similar combinatorial concepts. We also utilize
them to describe the results of this paper in a simple way.
Recall that a difference triangle of a permutation P ∈ Fp[x] is a triangular array DT (P) of integers, which has p − 1 rows
T1(P), . . . , Tp−1(P), where Tk(P) is the vector

Tk(P) = (P(k) − P(0), P(1 + k) − P(1), . . . , P(p − 1) − P(p − k − 1)),

for k = 1, . . . , p − 1. Calculating in Fp, we obtain a p-difference triangle DTp(P) of P , whose rows are:

Tp,k(P) = (P(k) ⊖ P(0), P(1 ⊕ k) ⊖ P(1), . . . , P(p ⊖ 1) ⊖ P(p ⊖ k ⊖ 1)),
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