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a b s t r a c t

We apply an all-at-once method for the optimal control of the unsteady Burgers equation.
The nonlinear Burgers equation is discretized in time using the semi-implicit discretization
and the resulting first order optimality conditions are solved iteratively by Newton’s
method. The discretize then optimize approach is used, because it leads to a symmetric
indefinite saddle point problem. Numerical results for the distributed unconstrained and
control constrained problems illustrate the performance of the all-at-once approach with
semi-implicit time discretization.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Analysis and numerical approximation of optimal control problems (OCPs) for the Burgers equation are important for
the development of numerical methods for the optimal control of more complicated models in fluid dynamics such as
the Navier–Stokes equations. In the literature, the OCP problems with the Burgers equation are solved either by using the
Lagrange–SQPmethods [1,2] or by Newton–Lagrangemethods [3]. In both approaches, the nonlinear OCP problem is solved
as a sequence of linearized convex quadratic OCP problems. A different approach is followed in [4] by transforming the
OCP problem into an elliptic equation in space and time and solving the optimality system using COMSOL Multiphysics. In
contrast to linear parabolic control problems, the optimal control of the Burgers equation is a non-convex global optimization
problem with multiple local minima. Numerical methods can find local solutions close to the starting points. We are
interested in local solutions as given in [1] using the Lagrange–SQP method and at each Newton iteration step we solve
a quadratic convex optimization problem. Therefore, we consider only first order optimality conditions.

In this paper,we apply the so-called all-at-oncemethod to the optimal control of the time-dependent Burgers equation. In
this method, the control and state are treated as independent optimization variables; the optimization problem is explicitly
constrained. The optimality system consisting of the state, control and adjoint state variables is solved for all time-steps at
once. The discretization of the first order optimality conditions leads to a saddle point system of the form
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x = b, (1)
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where A ∈ Rn×n is symmetric and positive definite or positive semi-definite and B ∈ Rm×n,m < n, is a matrix of full rank.
The linear system given in (1) is nonsingular and has a unique solution, if the block A is positive definite on the kernel of
B [5].

All at once methods are applied mostly to OCP problems governed by linear elliptic or parabolic partial differential
equations (PDEs) [6,7] and the Stokes equation [8]. Recently optimal control problems with coupled nonlinear
diffusion–reaction equations are solved by the all-at-once approach [9]. Standard time integrators for the Burgers equation
are the Crank–Nicolson and backward Euler methods which are implicit and unconditionally stable. The Burgers equation
can also be solved by the semi-implicit method, which provides an effective linearization procedure by solving, at each
time step, a linear system of equations with the same symmetric matrix [10–12]. In the semi-implicit method, the diffusive
part of the Burgers equation is discretized implicitly, and the non-linear part explicitly. It is also unconditionally stable
as the backward Euler and Crank–Nicolson methods. It is first order convergent in time for the linear diffusion–convection
equations [12] and for the Burgers equation like the backward Euler, whereas the Crank–Nicolsonmethod is of second order.
Using piecewise linear finite-element in space and semi-implicit discretization in time, the linearized OCP problem is solved
sequentially at each time step. In practice, the linear system Ax = b is usually of large size. When a one-shot approach for
time-dependent problems in the two dimensional space is considered, iterative solution methods with preconditioners are
needed [13,14].

There are two different approaches for the discretization of the OCPs: optimize then discretize (OD) and discretize then
optimize (DO). In the OD approach, first the necessary optimality conditions are established on the continuous level
consisting of the state, adjoint and the optimality equations, and then these equations are usually discretized by finite
elements. In the DO approach, the state equation is discretized and then the optimality system for the finite dimensional
optimization problem is derived. Recently, the commutativity of DO and OD approaches is discussed for solving OPC
problems with linear PDE constraints (see [15] for an overview). We will show that using the DO, the first order optimality
conditions for the linearized Burgers equation lead to a symmetric saddle point problem, and the OD to a non-symmetric
linear system. We follow here the DO, because the OD approach implies that there is no finite dimensional optimization
problem.

The paper is organized as follows. The discretization of the problemby finite elements in space and the time discretization
with the semi-implicit method will be presented in Section 2. Also the application of the all-at-once method for the
distributed unconstrained and control constrained problems is given in Section 2. Numerical results are given in Section 3.

2. The distributed control problem and discretization

We define Ω = (0, 1),Q = (0, T ) × Ω and Σ = (0, T ) × ∂Ω for given T > 0. The distributed control problem for the
viscous Burgers equation with control constraints and with homogeneous Dirichlet boundary conditions can be stated as
follows [16,1]:

min
(y,u)

J(y, u) =
1
2

 T

0

 1

0


(y(x, t) − yd(x, t))2 + αu2(x, t)


dxdt, (2)

subject to yt + yyx − νyxx = f + u (x, t) ∈ Q ,

y(0, t) = y(1, t) = 0 t ∈ Σ, (3)
y(x, 0) = y0 x ∈ Ω,

with bound constraints on the control

ua(t, x) ≤ u(t, x) ≤ ub(t, x) a.e. in Q ,

where ua and ub are given functions in Ł∞(Q ) satisfying ua ≤ ub. Here y(x, t) and yd(x, t) ∈ L2(Q ) denote the state and the
desired state, respectively. ν > 0 is the viscosity and α > 0 is the regularization parameter. For a fixed function f ∈ L2(Q ),
a given initial condition y0 ∈ H1

0 (Ω) and for the control u ∈ L2(Q ), the existence and uniqueness conditions of the weak
solution of the Burgers equation are given in [1].
Discretize-then-optimize approach.

In the DO approach, first the state equation and the objective function are discretized and the optimality conditions are
derived by using the discrete Lagrangian. State and control variables are discretized by using the standard Galerkin method
with linear finite elements in space with n uniform subdivisions with the step size h = 1/n. The weak form of the Burgers
equation becomes
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φidx, i = 1, . . . , n − 1.
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