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a b s t r a c t

We develop algorithmic techniques for the Coxeter spectral analysis of the class UBigrn
of connected loop-free positive edge-bipartite graphs ∆ with n ≥ 2 vertices (i.e., signed
graphs). In particular, we present numerical and graphical algorithms allowing us a
computer search in the study of such graphs ∆ by means of their Gram matrix Ǧ∆, the
(complex) spectrum specc∆ ⊆ C of the Coxeter matrix Cox∆ := −Ǧ∆ · Ǧ−tr∆ , and the
geometry of Weyl orbits in the set MorD∆ of matrix morsifications A ∈ Mn(Z) of a simply
laced Dynkin diagramD∆ ∈ {An, Dn, E6, E7, E8} associatedwith∆ andmesh root systems
of type D∆. Our algorithms construct the Coxeter–Gram polynomials cox∆(t) ∈ Z[t] and
mesh geometries of root orbits of small connected loop-free positive edge-bipartite graphs
∆. We apply them to the study of the following Coxeter spectral analysis problem: Does
the Z-congruence ∆≈Z ∆′ hold (i.e., the matrices Ǧ∆ and Ǧ∆′ are Z-congruent), for any pair
of connected positive loop-free edge-bipartite graphs ∆, ∆′ in UBigrn such that specc∆ =

specc∆′? The problem if any square integer matrix A ∈ Mn(Z) is Z-congruent with its
transpose Atr is also discussed. We present a solution for graphs in UBigrn, with n ≤ 6.

© 2013 Elsevier B.V. All rights reserved.

1. Preliminaries and notation

One of the aims of the paper is to develop algorithmic techniques for the study of Coxeter spectral analysis problems
formulated in [1–3] for loop-free edge-bipartite graphs ∆ = (∆0, ∆1), with n ≥ 2 vertices. Here we keep the terminology
and notation introduced in [3,4]. In particular, we denote by N the set of non-negative integers, by Z the ring of integers,
and by Q ⊆ R ⊆ C the rational, the real, and the complex number field, respectively. We view Zn, with n ≥ 1, as a free
abelian group, and we denote by e1, . . . , en the standard Z-basis of Zn. We denote by Mn(Z) the Z-algebra of all square
n by n matrices, by E ∈ Mn(Z) the identity matrix. We also use the right action ∗ : Mn(Q) × Gl(n, Z) −→ Mn(Q),
(A, C) → A ∗ C := C tr

· A · C of the general Z-linear group Gl(n, Z) := {A ∈ Mn(n, Z), det A ∈ {−1, 1}} on Mn(Q).
Following [3,4], by an edge-bipartite graph (bigraph, for short), we mean a pair ∆ = (∆0, ∆1), where ∆0 is a finite

non-empty set of vertices and ∆1 is a finite set of edges equipped with a bipartition ∆1 = ∆−1 ∪ ∆+1 such that the set
∆1(i, j) = ∆−1 (i, j) ∪∆+1 (i, j) of edges connecting the vertices i and j does not contain edges lying in ∆−1 (i, j) ∩∆+1 (i, j), for
each pair of vertices i, j ∈ ∆0, and either ∆1(i, j) = ∆−1 (i, j) or ∆1(i, j) = ∆+1 (i, j). Obviously, edge-bipartite graphs can be
viewed as signed multi-graphs satisfying a separation property, see [3,5]. We call ∆ = (∆0, ∆1) loop-free if it has no loops,
that is, ∆1(j, j) = ∅, for all j ∈ ∆0. We denote by Bigrn the category of finite edge-bipartite graphs, with n ≥ 2 vertices,
and the usual edge-bipartite graph maps as morphisms, see [3] for details. The full subcategory of Bigrn consisting of all
loop-free graphs is denoted by UBigrn.

∗ Corresponding author.
E-mail addresses: rafalb@mat.uni.torun.pl (R. Bocian), felixx@mat.uni.torun.pl (M. Felisiak), simson@mat.umk.pl, simson@mat.uni.torun.pl

(D. Simson).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.07.013

http://dx.doi.org/10.1016/j.cam.2013.07.013
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2013.07.013&domain=pdf
mailto:rafalb@mat.uni.torun.pl
mailto:felixx@mat.uni.torun.pl
mailto:simson@mat.umk.pl
mailto:simson@mat.uni.torun.pl
http://dx.doi.org/10.1016/j.cam.2013.07.013


816 R. Bocian et al. / Journal of Computational and Applied Mathematics 259 (2014) 815–827

Wevisualize∆ as a graph in a Euclidean spaceRm,m ≥ 2,with the vertices a1, . . . , an numbered by the integers 1, . . . , n;
usually we simply write ∆0 = {1, . . . , n}. An edge in ∆−1 (ai, aj) is visualized as a continuous one ai−−−− aj, and an edge in
∆+1 (ai, aj) is visualized as a dotted one ai- - -aj.

We view any finite graph ∆ = (∆0, ∆1) as an edge-bipartite one by setting ∆−1 (ai, aj) = ∆1(ai, aj) and ∆+1 (ai, aj) = ∅,
for each pair of vertices ai, aj ∈ ∆0. We study the loop-free edge-bipartite graphs ∆ ∈ UBigrn by means of the non-
symmetric Gram matrix

Ǧ∆ = [d∆
ij ] ∈ Mn(Z),

where d∆
ij = −|∆

−

1 (ai, aj)|, if there is an edge ai−−−− aj and i ≤ j, d∆
ij = |∆

+

1 (ai, aj)|, if there is an edge ai- - -aj and i ≤ j.
We set d∆

ij = 0, if ∆1(ai, aj) is empty or j < i. The matrix G∆ :=
1
2 (Ǧ∆ + Ǧtr

∆) is called the symmetric Gram matrix. We
call ∆ = (∆0, ∆1) positive (resp. non-negative), if the rational symmetric Gram matrix G∆ :=

1
2 (Ǧ∆ + Ǧtr

∆) of ∆ is positive
definite (resp. positive semi-definite). Two graphs ∆, ∆′ ∈ Bigrn are defined to be Z-equivalent (resp. Z-bilinear equivalent)
if there exists B ∈ Gl(n, Z) such that G∆′ = Btr

·G∆ ·B (resp. Ǧ∆′ = Btr
· Ǧ∆ ·B). In this case, wewrite∆∼Z ∆′ (resp.∆≈Z ∆′)

and we say that B ∈ Gl(n, Z) defines the Z-equivalence ∆∼Z ∆′ (resp. ∆≈Z ∆′).
Following [3] (see also [6]), we associate with any edge-bipartite graph ∆ in UBigrn, with n ≥ 2, the Coxeter spectrum

specc∆ ⊆ C, i.e., the spectrum of the Coxeter(–Gram) matrix and of the Coxeter(–Gram) polynomial

Cox∆ := −Ǧ∆ · Ǧ−tr∆ ∈ Mn(Z), cox∆(t) := det(t · E − Cox∆) ∈ Z[t]. (1.1)

The Coxeter transformation Φ∆ : Zn
→ Zn of ∆ is defined by Φ∆(v) := v · Cox∆ and the Coxeter number c∆ of ∆ is a

minimal integer c ≥ 2 such that Φc
∆ is the identity map on Zn. By the integral quadratic form of ∆ we mean

q∆(x) := b∆(x, x) = x21 + · · · + x2n +

i<j

d∆
ij xixj = x · G∆ · xtr = x · Ǧ∆ · xtr . (1.2)

We recall from [3, Lemma 2.1] that the Coxeter spectrum specc∆ ⊆ C lies on the unit circle S1
:= {z ∈ C; |z| = 1}

and all points in specc∆ are roots of unity, if ∆ is non-negative. If, in addition, ∆ is positive then 1 ∉ specc∆ and the set
R∆ := {v ∈ Zn

; v · G∆ · v
tr
= 1} ⊆ Zn of roots of ∆ is finite.

One of our aims of the paper is to present an algorithmic technique for a computer search of the following Coxeter spectral
analysis problems stated in [3] and discussed in [2–4,7].

Problem 1.3. Given n ≥ 2, compute the set CGpol+n of all Coxeter(–Gram) polynomials cox∆(t) ∈ Z[t], with positive
connected loop-free edge-bipartite graphs ∆ in UBigrn.

Problem 1.4. Show that, given a pair of connected positive loop-free edge-bipartite graphs∆ and∆′ inUBigrn, the equality
specc∆ = specc∆′ is equivalent to the existence of a Z-invertible matrix B ∈ Mn(Z) such that Ǧ∆′ = Btr

· Ǧ∆ · B. Construct
an algorithm computing such a matrix B ∈ Gl(n, Z).

Problem 1.5. For any matrix A ∈ Mn(Z), with det A = 1, find a matrix C ∈ Gl(n, Z) such that Atr
= C tr

· A · C and C2
= E,

see [8].

Problem 1.6. Given a connected positive loop-free edge-bipartite graph ∆ in UBigrn, construct a minimal Φ∆-mesh
geometry of roots of ∆ (that is, a Φ∆-mesh translation quiver Γ ( R∆, Φ∆) satisfying the conditions of [2, Definition 1.11],
see Section 2) such that, for any a pair of connected positive edge-bipartite graphs ∆ and ∆′ in UBigrn, the equality
specc∆ = specc∆′ implies the existence of a group automorphism Zn ∼= Zn that restricts to a Φ∆-mesh translation quiver
isomorphism Γ ( R∆, Φ∆) ∼= Γ ( R∆′ , Φ∆′).

The main results of the paper are the following two theorems (proved in Section 3) that contain a partial solution of
Problems 1.3–1.6 for edge-bipartite graphs ∆, ∆′ in UBigrn, with n ≤ 6.

Theorem 1.7. Assume that ∆, ∆′ are positive connected loop-free edge-bipartite graphs in UBigrn, with 2 ≤ n ≤ 6 and
D∆,D∆′ are the simply laced Dynkin diagrams associated in Theorem 2.1, with ∆∼Z D∆ and ∆′∼Z D∆′.

(a) (cox∆(t), c∆) is one of the pairs (F (j)
D∆(t), c(j)

D∆) listed in Table 1.8, see also [3, Figure 3].
(b) specc∆ = specc∆′ if and only if ∆≈Z ∆′.
(c) Given ∆, there exists a matrix C ∈ Gl(n, Z) such that Ǧtr

∆ = C tr
· Ǧ∆ · C and C2

= E.
(d) Given ∆, there is a minimal Φ∆-mesh geometry of roots Γ ( R∆, Φ∆) of ∆ satisfying the conditions listed in 1.6.

The following theorem contains a complete classification of positive connected loop-free edge-bipartite graphs with at
most six vertices, up to the congruence ∆≈Z ∆′.

Theorem 1.9. Assume that ∆ is a positive connected loop-free edge-bipartite graph in UBigrn, with 2 ≤ n ≤ 6. Under the
notation in Theorem 1.7, we have

(a) If cox∆(t) = F (1)
D∆(t) then ∆≈Z D∆.
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