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a b s t r a c t

In this paper, we formulate the feasibility problem corresponding to a filter design problem
as a convex optimization problem. Combined with a bisection rule, this leads to an algo-
rithm for minimizing the design parameter in the filter design problem. A safety margin is
introduced to solve the numerical difficulties when solving this type of problem numeri-
cally. Numerical experiments illustrate the validity of this approach for larger degrees of
the filter as compared to similar previous algorithms.

© 2013 Elsevier B.V. All rights reserved.

1. Motivation

In this paper, a low-pass filter design problem is considered in which the parameters of the problem are the passband
ripple, the stopband attenuation, and the degree of the filter transfer function. In [1], Genin et al. show that such a filter
design problem can be solved by combining a bisection rule on one of these design parameters and an optimization scheme
solving a feasibility problem. The feasibility problem can be reformulated as a convex optimization problem over the cone
of nonnegative trigonometric polynomials. In [2–5], it is shown that these polynomials can be parameterized by using
Hankel and/or Toeplitz matrices. In [1], the authors focus on minimizing one of the three parameters, namely, the stopband
attenuation. Their optimization method is based on the dual formulation and is implemented by using the LMI Toolbox of
MATLAB, but it breaks down as soon as the degree of the filter is greater than 7.

The aim of this paper is to design an algorithm that can be used formuch higher degrees of the filter.We first reformulate
the feasibility problem of the filter design problem as a convex optimization one, more precisely, as a conic programming
problem [6,7]. This approach is then used to develop an algorithm to solve the filter design problem in which the pass-
band ripple and the stopband attenuation are minimized simultaneously. In contrast to the approach in [1], our algorithm
solves the primal formulation of the problem. We also introduce a safety margin to make the results of the algorithm more
accurate. In our numerical experiments, we show that the primal convex feasibility problem can be solved efficiently and
accurately by using the cvx Toolbox [8,7,9]. This allows us to takemuch larger values of the filter degree. Finally, we discuss
the behavior of the minimal value of the whole problem when the filter degree, the passband, and the difference between
the stopband and the passband change.

2. Nonnegative trigonometric polynomials

In this section, we introduce some results on complex-valued functional systems and on the cones of nonnegative
trigonometric polynomials on the unit circle and its symmetric arcs. One can findmore details in [4] or [10, Sections 2.1–2.3].
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2.1. Complex-valued functional systems in the complex plane

Let Γ be an arbitrary set in the complex plane. Given a system S = {ψ0(z), . . . , ψr−1(z)} of linearly independent
complex-valued functions ψi(z) on Γ and a real-valued weight function φ(z) that is nonnegative on Γ , define the finite-
dimensional cone

K =


P(z) : P(z) = φ(z)

N−1
i=0

Qi(z)Qi(z)∗,Qi(z) ∈ F (S), i = 0, 1, . . . ,N − 1


, (1)

where

F (S) =


Q (z) : Q (z) =

r−1
k=0

Qkψk(z),Qk ∈ C, k = 0, 1, . . . , r − 1


(2)

and M∗ denotes the complex conjugate (transposed matrix) of (a matrix) M . We take N ≥ r . Define the squared functional
system

S2
= {vij(z) = φ(z)ψi(z)ψj(z)∗, i, j = 0, 1, . . . , r − 1}

and two vector functions, ψ(z) = [ψ0(z), . . . , ψr−1(z)]T , and v(z) = [v0(z), . . . , vs−1(z)]T , whose components span a
finite-dimensional space that covers S2.

Continuing, define two spaces:

E = {P = (P0, . . . , Ps−1) : Pk ∈ C, k = 0, 1, . . . , s − 1},
F = {W = (Wij) : Wij = W ∗

ji ∈ C, i, j = 0, 1, . . . , r − 1},

with corresponding complex-valued inner products, respectively,

⟨., .⟩E : E × E → C, (P,Q ) → ⟨P,Q ⟩E =
1
2

s−1
i=0

(Q ∗

i Pi + QiP∗

i ),

⟨., .⟩F : F × F → C, (X, Y ) → ⟨X, Y ⟩E =

r−1
i,j=0

Y ∗

ij Xij.

We can define a linear operatorΛ : E → F as

Λ(P) =
1
2

s−1
k=0

(PkΛk + P∗

kΛ
∗

k),

where {Λk}k ⊂ F is given such thatΛ(v(z)) = φ(z)ψ(z)ψ(z)∗,∀z ∈ Γ .

2.2. Nonnegative trigonometric polynomials

We summarize the results given in [10, Section 2.3]. A trigonometric polynomial of degree d is of the form

p(ejθ ) =

d
k=0


ak cos(kθ)+ bk sin(kθ)


, θ ∈ (−π, π] (3)

with ak, bk ∈ R, k = 0, 1, . . . , d. Without loss of generality, we can assume that b0 = 0. If we set z = ejθ , where j =
√

−1,
then z belongs to the unit circle T, and it is easy to see that

p(z) =
1
2


d

k=0

(ak + jbk)z−k
+

d
k=0

(ak − jbk)zk

.

If bk = 0, k = 0, 1, . . . , d, we call p a cosine polynomial.
Let ωz denote the argument of the complex number z with ωz ∈ (−π, π]. For each pair (u, v) ∈ T2 with 0 ≤ ωv −ωu <

2π , let us denote the arc from u to v on T as

Tuv = {z ∈ T : ωu ≤ ωz ≤ ωv}.

When 0 ≤ ωu < π , we write Tu,Tu instead of Tuu,Tuu, respectively.
As a particular case in the previous subsection, we take S = {1, z, . . . , zd}, φ(z) = 1, and Γ as one of the subsets T

or Tuv . Then ψ(z) can be chosen as ψ(z) = [1, z, . . . , zd]T , and a minimal basis for S2 corresponds to the vector function
v(z) = [1, z, . . . , z2d]T . This implies that r = d + 1 and s = 2d + 1. Additionally, E = Cd+1 and F = Hd+1, the set of
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