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a b s t r a c t

A high-order compact exponential finite difference scheme for solving the fractional
convection–diffusion equation is considered in this paper. The convection and diffusion
terms are approximated by a compact exponential finite difference scheme, with a high-
order approximation for the Caputo time derivative. For this fully discrete implicit scheme,
the local truncation error is analyzed and the Fouriermethod is used to discuss the stability.
The error estimate is given by the discrete energy method. Numerical results are provided
to verify the accuracy and efficiency of the proposed algorithm.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fractional differential equations (FDEs) have been intensely studied in the recent years, as their applications can be found
in physical, biological, geological and financial systems. Detailed discussions on fractional differential equations can be found
in the review article [1] and monograph [2].

Several numerical methods have been proposed for solving the space and/or time FDEs up to now, e.g., finite difference
schemes for the time fractional diffusion problems were discussed in [3–6]. These schemes are convergent with order of
two for the space variable(s), and it is interesting to seek high-order numerical methods for FDEs. Compact finite difference
schemes have the desirable tridiagonal nature of the finite-difference equations with high-order of accuracy (see [7,8]),
and one-dimensional fractional sub-diffusion equation was recently solved by the compact finite difference scheme with
convergence order O(τ + h4) in [9], a higher order O(τ 2−γ

+ h4) one can be found in [10], and compact ADI scheme for
two-dimensional problem in [11].

For steady and/or unsteady convection–diffusion equations of integer order, there have been many research papers on
this topic; see e.g., [12–15]. In [14,15], the authors point out that the high-order compact exponential scheme is preferred
for these kinds of equations. Therefore, we try to solve the time fractional convection–diffusion problem using the compact
exponential difference scheme in this paper. The problem we consider here is a constant coefficient convection–diffusion
problem, and the fractional Fokker–Planck equation is a more complicated one, with variable coefficients [16,17].

The model problem considered here is the fractional convection–diffusion equation,

C
0D

γ
t u(x, t) + p

∂u
∂x

− a
∂2u
∂x2

= g(x, t), L1 < x < L2, 0 < t < T . (1)

Here the convection coefficient p is a constant, and the diffusion coefficient a is a positive constant. Note that (1) becomes
the sub-diffusion equation when p = 0 and it was discussed in [9], so we consider the case p ≠ 0 in this paper. The Caputo
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fractional derivative C
0D

γ
t v(0 < γ < 1) of the function v(x, t) is defined by [2], i.e.,

C
0D

γ
t v(x, t) =

1
Γ (1 − γ )

 t

0

∂v(x,τ )

∂t

(t − τ)γ
dτ .

The initial condition for (1) is

u(x, 0) = w(x), L1 < x < L2 (2)

with the Dirichlet boundary condition given by

u(L1, t) = ϕ1(t), u(L2, t) = ϕ2(t), t ≥ 0. (3)

The paper is organized as follows. In Section 2, adopting the high-order exponential (HOE) scheme for the steady
problems first and then using the high order discretization for the time fractional derivative, we present an implicit compact
exponential difference scheme for the fractional convection–diffusion equation. The local truncation error is discussed
and the stability and convergence are analyzed using the Fourier analysis and energy method in Section 3. Finally, some
numerical examples are given in Section 4 to verify the theoretical conclusions. This paper closes with a summary in
Section 5.

Throughout this paper, the symbol C is a generic positive constant, it may take different values at different places. We
use the ‘‘empty sum’’ convention

q
l=p vl

= 0 for q < p.

2. High-order compact exponential difference scheme

2.1. Partition of the domain and some one-dimensional vectors

For the numerical solution of (1)–(3) we introduce a uniform grid of mesh points (xj, tn), with xj = L1 + jh, j =

0, 1, . . . ,Nx + 1, and tn = nτ , n = 0, 1, . . . ,N . Here Nx and N are positive integers, h = (L2 − L1)/(Nx + 1) is the
mesh-width in x, and τ = T/N is the time step. For any function v(x, t), we let vn

j = v(xj, tn), e.g., the theoretical solution
u at the mesh point (xj, tn) is denoted by un

j , and Un
j stands for the solution of an approximating difference scheme at the

same mesh point. On each time level tn we denote the exact solution vector of order Nx by un
= u(tn) = (un

1, u
n
2, . . . , u

n
Nx

)T

and the approximate solution vector Un
= U(tn) = (Un

1 ,U
n
2 , . . . ,U

n
Nx

)T .

2.2. Derivation of the high-order exponential scheme

In order to give the compact exponential scheme for the model problem (1)–(3), we study the corresponding steady
equation first, i.e., Eq. (1) without the fractional time derivative. For the ordinary differential equation

p
∂u
∂x

− a
∂2u
∂x2

= f (x), (4)

a high-order compact exponential scheme for (4) has already been given in [14,15]. We state the approximate scheme here.
Let U be the approximation of u in (4), the compact exponential scheme reads as

(−αδ2
x + pδx)Uj = (1 + α1δx + α2δ

2
x )fj. (5)

Here the difference operators δx and δ2
x are approximations for the first and second derivatives, respectively, and they are

defined by

δxUj =
Uj+1 − Uj−1

2h
, δ2

xUj =
Uj−1 − 2Uj + Uj+1

h2
, δxUj− 1

2
=

Uj − Uj−1

h
.

As we discuss the case for p ≠ 0, then the coefficients in (5) are (see [14,15])

α =
ph
2

coth

ph
2a


, α1 =

a − α

p
, α2 =

a(a − α)

p2
+

h2

6
, (6)

then one has

(−αδ2
x + pδx)uj = (1 + α1δx + α2δ

2
x )fj + O(h4),

and the local truncation error for this compact exponential scheme is O(h4).
Now we turn to the numerical solution of (1). Similarly to what have been done in [13,15], this HOE scheme can be

extendeddirectly to the unsteadyproblem (1) by simply replacingu(x)byu(x, t), and f (x)by−
C
0D

γ
t u(x, t)+g(x, t). Therefore
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