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a b s t r a c t

In this paper, we consider the problem of image restoration with Tikhonov regularization
as a convex constrained minimization problem. Using a Kronecker decomposition of the
blurring matrix and the Tikhonov regularization matrix, we reduce the size of the image
restoration problem. Therefore, we apply the conditional gradient method combined
with the Tikhonov regularization technique and derive a new method. We demonstrate
the convergence of this method and perform some numerical examples to illustrate the
effectiveness of the proposed method as compared to other existing methods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Image restoration is one of the classical problems in image processing. The problem consists of the reconstruction of
an original image that has been digitized and has been degraded by a blur and an additive noise. The blurring process is
described mathematically by a point spread function (PSF), which is a function that specifies how pixels in the image are
distorted. The discrete model of the image restoration problem can be presented as the following system of linear equations

g = Ax + n, (1)

where x,n and g are np-vectors representing the true image X of size n× p, the distorted image G and the additive noise N,
respectively; the vectors x, g and n are obtained by stacking the rows of X,G and N, respectively. The matrix A is an np× np
matrix that represents the blurring phenomena. It is constructed from the PSF, and is called the blurring matrix. It is well
known that the blurring matrix A is of ill-determined rank, i.e., A is very large and has many singular values of different
orders of magnitude close to the origin. The right-hand side vector g in (2) represents the available output and is assumed
to be contaminated by an error (noise) n, i.e., g = g + n, whereg = Ax is the noise-free degraded image andx is the
vector representing the true imageX . The goal of the restoration problem is to obtain an acceptable approximation to the
original image. It is well-known that image restoration problems are converted into large-scale ill-posed problems. Some
treatments and overviews on image restoration can be found in [1–3]. In this paper, we restrict our attention to the problem
(2) involving image restoration. Here, we consider the convex minimization problem

min
x∈Ω ∥Ax − g∥2. (2)

The set Ω ⊂ Rnp could be a simple convex set (e.g., a sphere or a box) or the intersection of some simple convex sets. Due
to the ill conditioning of the problem (2), we replace the original problem by a better conditioned one in order to diminish
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the effects of the noise in the data. One of themost popular regularizationmethods is due to Tikhonov. Themethod replaces
the problem (2) with the new one

min
x∈Ω (∥Ax − g∥2

2 + λ2
∥Rx∥2

2), (3)

where R is a regularization operator chosen to obtain a solution with desirable properties such as small norm or good
smoothness.

Image restoration problemswith constraints or large-scale linear discrete ill-posed problemswith constraints have been
widely studied in the literature. Several different approaches to their solution have been proposed; see, e.g., [4–9]. To the
best of our knowledge, combining the conditional gradient methodwith the regularization Tikhonov techniques, for solving
the image restoration problem, has not previously received any attention in the literature. In this paper, we consider the
case when both the blurring matrix and the Tikhonov regularization matrix are factorized as Kronecker products of two
matrices.

In this paper, we combine the conditional gradient algorithm with the Tikhonov regularization technique to obtain a
newmethod that will be applied to image restoration problems. The outline of this paper is as follows. In Section 2, we will
consider the problem (3) for image restoration as amatrix convex optimization problem. The blurringmatrix Awill be given
as a Kronecker product of two small matrices. Using some appropriate properties of the Kronecker product, the convex
optimization problem to treat here will be of a reasonable dimension. To estimate an optimal value of the regularization
parameter λ, we will use the generalized cross-validation method based on the generalized singular value decomposition
(GSVD). In Section 3, we propose the conditional gradient algorithm to solve the obtained convex optimization problem. The
conditional gradientmethod is combinedwith the Tikhonov regularization and leads to a newmethod called the conditional
gradient-Tikhonov method. We also give some convergence results of the proposed process. Finally, in Section 4, we give
some numerical examples to illustrate the effectiveness of our proposed method in image restoration and compare our
proposed method to the Reduced Newton method proposed in [10].

2. Matrix convex Tikhonov minimization problem

In practice, the typical values of n and p are 256, 512, and 1024, so the dimensions of the blurring matrix A are extremely
large and a direct solution of the problems (2) and (3) involves themanipulation of large systems of simultaneous equations
whose solution is beyond the capabilities of most present-day computers.

The Kronecker product plays an important role in image processing. Particularly, sparse factorization of the blurring
matrix by the Kronecker product of Toeplitz matrices provides practical algorithms. Let A = (aij) be an n × p matrix and
B = (bij) be an s×qmatrix. The Kronecker product of thematrices A and B is defined as the (ns)×(pq)matrix A⊗B = (aijB).
The vec operator transforms the matrix A to a vector a of size np × 1 by stacking the rows of A, namely,

a = vec(A) := (a11, . . . , a1p, a21, . . . , a2p, . . . , an1, . . . , anp)T .

We will use the following property of the Kronecker product given in [11],

vec(AXB) = (BT
⊗ A)vec(X). (4)

For A and B two matrices in Rn×p, we define the following inner product ⟨A|B⟩F = tr(AT B) where tr(Z) denotes the trace of
the square matrix Z and AT is the transpose of the matrix A. It follows that the well known Frobenius norm denoted by ∥.∥F
is given by ∥A∥F =

√
⟨A|A⟩F . We have the following property

⟨A|B⟩F = ⟨vec(A)|vec(B)⟩2, ∥A∥F = ∥vec(A)∥2,

where ⟨. | .⟩2 denotes the l2-inner product.
A separable PSF is often assumed in many applications [1]. In the context of image restoration when the point spread

function (PSF) is separable the blurringmatrix A given in (1) can be approximated as a Kronecker product A = A2⊗A1 of two
blurring matrices of appropriate sizes. In the case of nonseparable PSF, one can solve the Kronecker product approximation
problem (KPA). The KPA consists of the following mean-squares problem

(A1,A2) = arg min
A1,A2

∥A − A2 ⊗ A1∥F .

Van Loan and Pitsianis [12] show how to solve the KPA problem using the singular value decomposition (SVD). Recently,
Kamm and Nagy [13,14] give an efficient algorithm for computing a solution of KPA problem in image restoration. In this
paper, the hypothesis of a separable PSF together with an additive white Gaussian noise are assumed. So, we assume that
A = A2 ⊗ A1 and R = R2 ⊗ R1 where A1, R1 are square matrices of dimension n × n and A2, R2 are square matrices of
dimension p × p. The problem (3) can be rewritten as

min
x∈Ω (∥(A2 ⊗ A1)x − g∥2

2 + λ2
∥(R2 ⊗ R1)x∥2

2). (5)
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