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a b s t r a c t

A local convergence analysis for a generalized family of two step Secant-like methods with
frozen operator for solving nonlinear equations is presented. Unifying earliermethods such
as Secant’s, Newton, Chebyshev-like, Steffensen and other new variants the family of itera-
tive schemes is built up, where a profound and clear study of the computational efficiency
is also carried out. Numerical examples and an application using multiple precision and a
stopping criterion are implemented without using any known root. Finally, a study com-
paring the order, efficiency and elapsed time of the methods suggested supports the theo-
retical results claimed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

There are a great variety of iterativemethods for solving a system of nonlinear equations F(x) = 0, where F : D ⊆ Rm
→

Rm, and D is a non-empty open convex subset of Rm that contains a simple root α of F .
A classical iterative process for solving nonlinear equations is Chebyshev’s method (see [1–3])

x0 ∈ D,

yn = xn − F ′(xn)−1 F(xn)

xn+1 = yn −
1
2
F ′(xn)−1 F ′′(xn) (yn − xn)2, n ≥ 0.

The above one-point iterative scheme depends explicitly on the two first derivatives of F . In [1], Ezquerro and Hernández
present somemodifications in Chebyshev’s method by reducing in one the number of evaluations of the first derivative and
maintaining third-order of convergence. It has the following form:

x0 ∈ D,

zn = xn − a F ′(xn)−1 F(xn),

xn+1 = xn −
1
a2

F ′(xn)−1 
(a2 + a − 1) F(xn) + F(zn)


, n ≥ 0.

Using thewell-known Secantmethod [4], in [5] a generalization of it employing the divided difference operator of order one
(namely, Bn = [xn−1, xn; F ]) that substitutes the derivative of F (F ′(xn) ≡ [xn, xn; F ]) is given. The authors call this family
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the Chebyshev–Secant-type method and it is defined by
x−1, x0 ∈ D,

zn = xn − a B−1
n F(xn),

xn+1 = xn − B−1
n (b F(xn) + c F(zn)) , n ≥ 0,

where a, b, c are non-negative parameters to be chosen so that the sequence {xn} converges toα withmaximum local order
of convergence.

The work presented in [6] analyzes free-derivative iterative processes considering the operator Cn = [xn, L(xn); F ] and
they are called the Steffensen-type method:

x0 ∈ D,

zn = xn − a C−1
n F(xn),

xn+1 = xn − C−1
n (b F(xn) + c F(zn)) , n ≥ 0,

where L : D ⊆ Rm
→ Rm.

Our goal in the present paper is to unify these methods by considering the following iterative family
x−1, x0 ∈ D,

zn = xn − aΘ−1
n F(xn),

xn+1 = xn − Θ−1
n (b F(xn) + c F(zn)) , n ≥ 0,

(1)

whereΘn = [G(xn−1, xn), H(xn−1, xn); F ] and G, H : D ⊆ Rm
×Rm

→ Rm. As can be observed, the above family includes as
particular cases the preceding works [5,6] and other well-known algorithms. Furthermore, (1) also offers us the possibility
to suggest new methods as we will see later on.

2. Local order of convergence

To obtain explicitly an expression of the inverse operator of Θn, we denote by J indistinctly both G or H . On account that
a necessary condition about functions G and H is: G(α, α) = H(α, α) = α, then from Taylor’s formulae we get the error
expression

εJ = J(xn−1, xn) − α = J1 en−1 + J2 en + 1/2

J11 e2n−1 + J22 e2n + 2J12 en−1 en


+ · · · ,

where J1 =
∂ J

∂xn−1
(α, α), J2 =

∂ J
∂xn

(α, α), J11 =
∂ 2J

∂x2n−1
(α, α), etc.

The expression of Θn is given in the previous works appeared in [7,8]. Namely,

Θn = [G(xn−1, xn), H(xn−1, xn); F ] = Γ

I + A2 (εG + εH) + A3 (ε2

G + εGεH + ε2
H)

+ A4 (ε3
G + ε2

GεH + εGε
2
H + ε3

H) + · · ·

,

where Γ = F ′(α) ∈ L(Rm), Ak =
1
k! Γ −1 F (k) (α), Ak ∈ Lk(Rm, Rm) and Ak is k-symmetric. From the preceding follows

Θ−1
n =


I − A2 (εG + εH) − (A3 − A2

2) (ε2
G + εGεH + ε2

H) + A2
2 εGεH + A2 (εG + εH) · A3 (ε2

G + εGεH + ε2
H)

+ A3 (ε2
G + εGεH + ε2

H) · A2 (εG + εH) − A4 (ε3
G + ε2

GεH + εGε
2
H + ε3

H)

Γ −1,

where A2
2 ε2

G = (A2 εG)
2. Setting En = zn − α, en = xn − α and using Taylor’s development yield

F(xn) = Γ

en + A2 e2n + o(e2n)


.

Subtracting α from both sides of the first equation of (1), we obtain

En = en − aΘ−1
n Γ


en + A2 e2n + o(e2n)


= (1 − a) en + a A2 (G1 + H1) en−1 en

+ a

1
2
A2 (G11 + H11) + A3 (G2

1 + H2
1 + G1H1) − (A2 (G1 + H1))

2

e2n−1 en

+ a A2 (G2 + H2 − I) e2n + o(e2n−1 en, e2n), (2)

where the following notation was used:

A2 (G1 + H1) en−1 en = A2 (G1en−1 + H1en−1) en,
A2 (G11 + H11) e2n−1 en = A2 (G11e2n−1 + H11e2n−1) en,

A3 (G2
1 + H2

1 + G1H1) e2n−1 en = A3

(G1en−1)(G1en−1) + (H1en−1)(H1en−1) − (G1en−1)(H1en−1)


en,
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