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a b s t r a c t

In this paper we present a quasi-Newton’s method for unconstrained multiobjective opti-
mization of strongly convex objective functions. Hence, we can approximate the Hessian
matrices by using the well known BFGS method. The approximation of the Hessian matri-
ces is usually faster than their exact evaluation, as used in, e.g., recently proposed New-
ton’s method for multiobjective optimization. We propose and analyze a new algorithm
and prove that its convergence is superlinear.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Inmultiobjective optimization, several conflicting objectives have to beminimized simultaneously. Generally, no unique
solution exists but a set ofmathematically equally good solutions can be identified, by using the concept of Pareto optimality.
Many applications of multiobjective optimization can be found in engineering [1–6], economics and finance [7,8], medicine
[9–11], management and planning [12,13], etc.

There exist many solution strategies to solve the multiobjective optimization problems. One of the basic approaches is
theweightingmethod (see [14]), where one single-objective optimization problem is formed byweighting several objective
functions. Similar problem has the ε-constraint method, introduced in [15]. Here, we minimize only the chosen objective
functions and we bound the others. Some algorithms require the preordering of the functions due to their importance [16].
First, themost important function is optimized, then the second, etc. The disadvantage of these approaches is that the choice
of weights, constraints, or the importance of the functions respectively, is not known in advance and has to be prespecified.

Some other techniques for multiobjective optimization that do not need any a priori information were developed in
recent years, e.g., the steepest descent algorithm, studied in [17–19]with atmost linear convergence. Othermethods depend
on heuristic, especially evolutionary approaches. Efficient evolutionary algorithms can be found in [20]. Unfortunately, there
exist no convergence proofs and the empirical convergence is quite slow. For a survey on other multiobjective approaches
see, e.g., [21,22].

Recently, a parameter-free optimization method for unconstrained multiobjective optimization was developed [23]. It
borrows the idea of the Newton’s method for single-objective optimization. The necessary assumption is that the objective
functions are twice continuously differentiable but no other parameters or ordering of the functions are needed. The authors
show that the rate of convergence is at least superlinear and it is quadratic if the second derivatives are Lipschitz continuous.

In this paper, we present a similarmultiobjective optimizationmethod,which approximates the second derivativematri-
ces instead of evaluating them. Therefore, the time for one step reduces. The rate of convergence is proven to be superlinear.
This concept is analogous to quasi-Newton’s method for single-objective optimization.
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The rest of the paper is as follows. Section 2 introduces the problem, notation and preliminaries. Section 3 derives a di-
rection search program, solved by Karush–Kuhn–Tucker multipliers. Next, we present the algorithm considered. Section 4
establishes some theoretical results. They are needed in Section 5, which contains the main convergence result. The out-
comes of numerical simulations and commentaries are presented in Section 6, which is followed by conclusions in Section 7.

2. Notation and preliminaries

Let us start with some notation. Let R be the set of real numbers, R+(R−) the set of strictly positive (negative) real
numbers andN the set of positive integers. Assume thatU ⊆ Rn, n ∈ N, is an open set. Furthermore, let an objective function

F : U −→ Rm,

wherem ≥ 2, be given. Function F = (f1, f2, . . . , fm) is a vector function which components are scalar functions

fj : U −→ R, j = 1, 2, . . . ,m.

Note that n andm are independent in general.
Throughout the paper we will assume that F ∈ C2(U), i.e., F is twice continuously differentiable on U . For x ∈ U , let

∇fj(x) ∈ Rn denote the gradient of fj at x for all j = 1, 2, . . . ,m. The matrix JF(x) ∈ Rm×n is the Jacobian matrix of F
at x, i.e., the j-th row of JF(x) is ∇fj(x)T for all j = 1, 2, . . . ,m. Let ∇

2fj(x) be the Hessian matrix of fj at x, again for all
j = 1, 2, . . . ,m. By Im(M) we denote the range of a matrix M ∈ Rm×n and the identity matrix is I ∈ Rn×n. For matrices
M,N ∈ Rn×n we write M > N ifM − N is positive definite.

The Euclidean norm in Rn will be denoted by ∥ · ∥. We use the same notation for the induced operator norms on the
corresponding matrix spaces. Let B(x, r) be a closed ball with a center x ∈ Rn and radius r ∈ R+.

We shall assume strong convexity for fj on U for all j = 1, 2, . . . ,m. Function

f : U −→ R,

f ∈ C2(U), is strongly convex if for all x, y ∈ U

(∇f (x) − ∇f (y))T (x − y) ≥ a∥x − y∥2, (1)

for some a > 0 (see [24]). It is easy to see that (1) is equivalent to

∇
2f (x) ≥ aI, for all x ∈ U .

Strong convexity implies strict and usual convexity. Hence, if fj are strongly convex, Hessian matrices ∇
2fj(x) are positive

definite for all x ∈ U and for all j = 1, 2, . . . ,m.
Our task is to find a Pareto optimum of the objective function F .

Definition 1. A point x∗
∈ U is a Pareto optimum, if there is no y ∈ U for which

F(y) ≤ F(x∗) and F(y) ≠ F(x∗)

holds. The point x∗
∈ U is a weak Pareto optimum if there is no y ∈ U such that

F(y) < F(x∗).

The inequality signs ≤ and < are understood in a componentwise sense. Clearly every Pareto optimum is also weak Pareto
optimum.

Sometimes there exist points which are Pareto optima only on a restricted subset of U .

Definition 2. A point x∗
∈ U is a local Pareto optimum if there exists a neighborhood V ⊆ U of x∗ such that the point x∗ is a

Pareto optimum for F restricted on V . Similarly, a point x∗
∈ U is a local weak Pareto optimum if there exists a neighborhood

V ⊆ U of x∗ such that the point x∗ is a weak Pareto optimum for F restricted on V .

Let us introduce a necessary condition for Pareto optimality first. A point x∗
∈ U is stationary point of F if

Im(JF(x∗)) ∩ Rm
−

= ∅. (2)

This definition was first used in [17]. Note that for m = 1, (2) reduces to the classical condition ∇f (x∗) = 0. If x∗ is a
stationary point of F , then from (2) follows that for all p ∈ Rn there exists j0 ∈ {1, 2, . . . ,m} such that ∇fj0(x

∗)Tp ≥ 0.
If x ∈ U is not stationary, then there exists p ∈ Rn such that ∇fj(x)Tp < 0 for all j = 1, 2, . . . ,m. Function F is contin-

uously differentiable, therefore,

lim
α→0

fj(x + αp) − fj(x)
α

= ∇fj(x)Tp < 0, j = 1, 2, . . . ,m.
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