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a b s t r a c t

In this paper, we consider the numerical approximation of the three-dimensional poroe-
lastic wave equations in the spherical coordinate system. One difficulty in the design of an
efficient numerical scheme is that the problem is singular in the center and the polar axes
of the computational domain. Nevertheless, we develop a hybrid finite difference/control
volume method for solving this problem. Our method is explicit and is second order accu-
rate in both space and time. Numerical results are shown to confirm the convergence rate
of our method and the effectiveness to simulate wave propagation in poroelastic media in
the spherical coordinate system.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

The simulation of elastic wave propagation in complex poroelastic media is an important research area due to its wide
range of applications in various fields such as geophysics and petroleum engineering. For instance, in order to obtain useful
insight for the exploration of hydrocarbon, the behavior of elastic waves propagating in fluid-saturated porous media is
crucial. Biot’s linear theory [1–4] has been used as a basis for solving wave propagation problem in fluid saturated porous
media. This theory is established under the following assumptions: (1) the fluid phase is continuous so that disconnected
pores are treated as if a single solid matrix; (2) the porous media is statistically isotropic, which means for all cross sections,
the ratio of pore area to the solid occupied area is essentially constant; (3) the microscopic pore size is much smaller than
the seismic wavelength; (4) the deformations are small, which guarantees linearity of the mechanical processes; (5) the
solid matrix is elastic. By using a model based on the poroelastic wave equations, the effects of fluid, pressure, porosity and
permeability between phases can be systematically taken into account and provides more accurate solutions that cannot be
obtained through the use of Biot’s linear theory, which consists of a pure elastic or acoustic wave equation.
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The finite difference method is perhaps the most popular and practical tool used in simulating acoustic and elastic
wave propagation [5–11]. In literature, there are many numerical schemes for solving the Biot equations, for example, the
classical finite difference schemes are developed in [12–14], the staggered-grid finite difference method in [15–18] and the
discontinuous Galerkin method in [19]. All of these methods are of course based on rectangular computational domains. In
some practical situations such as the wave scattering problem [20,21], the computational domain is a spherical domain or
a semi-infinite half-space domain and computations in the spherical coordinate system are more suitable. Moreover, one
needs to solve the poroelasticwave equations in unboundeddomains, and thus one needs to impose some artificial boundary
conditions. One option is the so-called exact nonreflecting boundary conditions [21–24]. The construction of such boundary
conditions is based on a spherical computational domain and spherical harmonics. Hence, it is more convenient to solve the
resulting problem in spherical coordinates. In this paper,we consider the numerical approximation of the three-dimensional
poroelastic wave equations defined on a spherical computational domain in the spherical coordinate system. The finite
difference method provides a fast and easy-to-implement numerical method for such a problem. The main difficulty in the
design of an efficient numerical scheme is that the problem is singular in the center and the polar axes of the computational
domain. It is the purpose of this paper to develop an efficient scheme for this problem. In particular, wewill propose a hybrid
finite difference/control volume method for computing a numerical solution of the problem. Our method is explicit and is
second order accurate in both space and time, despite the singularities.

The paper is organized as follows. In Section 2, we will present the three dimensional poroelastic wave equations in the
spherical coordinate system and the corresponding finite difference scheme in non-singular regions. Then in Section 3, we
will give a control volume approach to tackle the singular region, and this is the backbone of our hybridmethod. In Section 4,
we present some numerical results to verify the effectiveness and the rate of convergence of our method. Finally, we give a
conclusion.

2. Poroelastic wave equations in a spherical coordinate system

According to Biot’s theory, wave propagation in a three dimensional statistically poroelastic medium is described by Biot
equations [1–4]:
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In Eqs. (2.1)–(2.3), the physical parameters of themedium are described as follows:µ is the shearmodulus of the dry porous
matrix; λ is the Lamé constant of the saturated matrix; φ is the porosity; κ is the permeability of the matrix; ρ is the overall
density of the saturated medium given by ρ = φρf + (1 − φ)ρs; ρf is the density of the pore fluid, ρs is the density of
the solid grains; η is the viscosity of the pore fluid; a is the tortuosity of the matrix; Ks is the bulk modulus of the matrix
material; Kf is the bulk modulus of the pore fluid; Kb is the bulk modulus of the dry porous frame.

The Eqs. (2.1) and (2.2) consist of six equations defined in a three dimensional medium for the six components ui and
wi, i = 1, 2, 3, where ui is the ith component of the displacement vector of the solid material, wi = φ(Ui − ui) is the ith
component of the displacement vector of the pore fluid relative to that of the solid, and Ui is the displacement vector of the
pore fluid. Moreover, σij = (∂uj/∂xi + ∂ui/∂xj)/2 is the strain tensor in the porous medium, ξ = −∇ · w is the dilatation
of the relative motion between the fluid and the solid, and e = ∇ · u is the dilatation of the solid motion.

Nowwe consider a spherical computational domain B centered at the origin with radius R and assume that the medium
is homogeneous. We will need to represent a vector field in spherical coordinates. For a general vector field f (r, ϑ, φ, t),
we use f r , f ϑ and f φ to represent the components of f in the directions r̂, ϑ̂ and φ̂ respectively, where r̂, ϑ̂ and φ̂ are the
unit vectors in the spherical coordinate system. Let u = (ur , uϑ , uφ, t) and w = (wr , wϑ , wφ, t). Then in the spherical
coordinate system, Eqs. (2.1) and (2.2) can be written as:
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